On Dimensionality Reduction for Indexing and Retrieval of Large-Scale Solar Image Data

作者: J. M. Banda , R. A. Angryk , P. C. H. Martens

DOI: 10.1007/S11207-012-0027-4

关键词: Degree (graph theory)Dimensionality reductionSearch engine indexingScale (descriptive set theory)Nonlinear dimensionality reductionPhysicsBenchmark (computing)Representation (mathematics)Pattern recognitionArtificial intelligenceVector space

摘要: This work investigates the applicability of several dimensionality reduction techniques for large-scale solar data analysis. Using a benchmark dataset that contains images multiple types phenomena, we investigate linear and nonlinear methods in order to reduce our storage processing costs maintain good representation new vector space. We present comparative analysis different numbers target dimensions by utilizing classifiers determine degree can be achieved with these methods, discover method is most effective images. After determining optimal number dimensions, then preliminary results on indexing retrieval dimensionally reduced data.

参考文章(88)
V. N. Vapnik, The Nature of Statistical Learning Theory. ,(1995)
Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing 3rd Edition ,(2014)
Pierre Chainais, Vincent Barra, Jean-François Hochedez, Véronique Delouille, Segmentation of EIT images using fuzzy clustering. A preliminary study The Dynamic Sun: Challenges for Theory and Observations. ,vol. 11, ,(2005)
Semi-Supervised Learning Advanced Methods in Sequence Analysis Lectures. pp. 221- 232 ,(2010) , 10.7551/MITPRESS/9780262033589.001.0001
Steven L. Salzberg, Alberto Segre, Programs for Machine Learning ,(1994)
Vladimir Naumovich Vapnik, Estimation of Dependences Based on Empirical Data ,(2010)
Hinrich Schütze, Christopher D. Manning, Prabhakar Raghavan, Introduction to Information Retrieval ,(2005)
Volker Markl, MISTRAL: Processing Relational Queries using a Multidimensional Access Technique Ausgezeichnete Informatikdissertationen. pp. 158- 168 ,(2000) , 10.1007/978-3-322-84823-9_15