Identifying projected clusters from gene expression profiles

作者: Kevin Y. Yip , David W. Cheung , Michael K. Ng , Kei-Hoi Cheung

DOI: 10.1016/J.JBI.2004.05.002

关键词: Similarity (geometry)Dependency (UML)Cluster analysisComputer scienceUser interfaceLinear subspaceData miningEuclidean distanceVisualizationDomain knowledge

摘要: In microarray gene expression data, clusters may hide in subspaces. Traditional clustering algorithms that make use of similarity measurements the full input space fail to detect clusters. recent years a number have been proposed identify this kind projected clusters, but many them rely on some critical parameters whose proper values are hard for users determine. paper new algorithm dynamically adjusts its internal thresholds is proposed. It has low dependency user while allowing domain knowledge should they be available. Experimental results show capable identifying interesting from real data.

参考文章(34)
George M. Church, Yizong Cheng, Biclustering of Expression Data intelligent systems in molecular biology. ,vol. 8, pp. 93- 103 ,(2000)
Steven L. Salzberg, Alberto Segre, Programs for Machine Learning ,(1994)
Raymond T. Ng, Jiawei Han, Efficient and Effective Clustering Methods for Spatial Data Mining very large data bases. pp. 144- 155 ,(1994)
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
Cecilia M. Procopiuc, Michael Jones, Pankaj K. Agarwal, T. M. Murali, A Monte Carlo algorithm for fast projective clustering Proceedings of the 2002 ACM SIGMOD international conference on Management of data - SIGMOD '02. pp. 418- 427 ,(2002) , 10.1145/564691.564739
D. Dembele, P. Kastner, Fuzzy C-means method for clustering microarray data Bioinformatics. ,vol. 19, pp. 973- 980 ,(2003) , 10.1093/BIOINFORMATICS/BTG119
David Eppstein, Fast hierarchical clustering and other applications of dynamic closest pairs ACM Journal of Experimental Algorithms. ,vol. 5, pp. 1- ,(2000) , 10.1145/351827.351829
Amir Ben-Dor, Zohar Yakhini, Clustering gene expression patterns research in computational molecular biology. pp. 33- 42 ,(1999) , 10.1145/299432.299448