DIFFUSION PROCESSES AND RIEMANNIAN GEOMETRY

作者: S A Molchanov

DOI: 10.1070/RM1975V030N01ABEH001400

关键词: Differential geometrySpectral geometryMathematicsRiemannian geometryGeometry and topologyDiffusion processMathematical analysisCurvature of Riemannian manifoldsInformation geometryWarped geometry

摘要: This paper studies the asymptotic behaviour as of transition density a diffusion process on smooth manifold. The results are stated in language differential geometry. We look at applications formulae to local structure processes and spectral theory.

参考文章(20)
H. P. McKean, Jr., I. M. Singer, Curvature and the eigenvalues of the Laplacian Journal of Differential Geometry. ,vol. 1, pp. 43- 69 ,(1967) , 10.4310/JDG/1214427880
Lionel Bérard-Bergery, Laplacien et géodésiques fermées sur les formes d'espace hyperbolique compactes Séminaire Bourbaki. ,vol. 14, pp. 107- 122 ,(1973) , 10.1007/BFB0069279
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
R Balian, C Bloch, Asymptotic evaluation of the Green's function for large quantum numbers Annals of Physics. ,vol. 63, pp. 592- 606 ,(1971) , 10.1016/0003-4916(71)90032-7
Yu L Daletskii, Functional Integrals Connected with Operator Evolution Equations Russian Mathematical Surveys. ,vol. 17, pp. 1- 107 ,(1962) , 10.1070/RM1962V017N05ABEH004121
Mark Kac, G. E. Uhlenbeck, A. R. Hibbs, Balth. van der Pol, J. Gillis, Probability and Related Topics in Physical Sciences ,(1957)
Daniel Ray, On spectra of second-order differential operators Transactions of the American Mathematical Society. ,vol. 77, pp. 299- 321 ,(1954) , 10.1090/S0002-9947-1954-0066539-2
A. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze Mathematische Annalen. ,vol. 113, pp. 766- 772 ,(1937) , 10.1007/BF01571664