作者: Carlos Banquet Brango
DOI:
关键词: Ill posedness 、 Limit (mathematics) 、 Discrete mathematics 、 Long period 、 Mathematical physics 、 Initial value problem 、 Wave equation 、 Exact theory 、 Sobolev space 、 Infinity 、 Mathematics
摘要: In the present work we obtain two important results for Symmetric Regulraized-Long-Wave equation. First prove that initial value problem this equation is ill-posed data in $H^s(\mathbb{R})\times H^{s-1}(\mathbb{R}),$ if $s< 0,$ sense flow-map cannot be continuous at origin from H^{s-1}(\mathbb{R})$ to even $(\mathcal{D}'(\mathbb{R}))^2.$ We also establish an exact theory of convergence periodic solutions one, Sobolev spaces, as period goes infinity.