Static Heuristics Classifiers as Pre-Filter for Malware Target Recognition (MATR)

作者: Anuj Lohani , Aditi Lohani , Jitendra Singh , Manish Bhardwaj

DOI: 10.11648/J.AJNC.20150403.14

关键词: Artificial intelligencePortable ExecutableExecutableComputer securityMachine learningHeuristicsHeuristic (computer science)MalwareComputer scienceInformation systemInformation sensitivitySet (abstract data type)

摘要: Now a day’s malware are one of the major threats to computer information system. The current detection technologies have certain significant limitations on their part. Different organizations which deal with protection sensitive may face problem in identifying recent among millions and billions benign executables using just signature-based antivirus systems. Currently for frontline defense against malware, products used by organization.In undergoing project, we proposed approach static heuristics MATR PE (portable executable) files. project suggestslarger performance-based target recognition architecture that at present use only heuristic features.Results experiments show this achieves an overall test accuracy greater than 98% againstmalware set collected from various operational environments, while most provide 60% configuration [1]. Implementations enables be classified successfully some extent providing enhanced awareness operators hostile environments it also enable unknown malware. We performance Bagging AdaBoostensemble.

参考文章(14)
Gerald Tesauro, William Arnold, AUTOMATICALLY GENERATED WIN32 HEURISTIC VIRUS DETECTION ,(2000)
Richard A. Raines, Thomas E. Dube, A novel malware target recognition architecture for enhanced cyberspace situation awareness Air Force Institute of Technology. ,(2011)
Steven K. Rogers, Richard A. Raines, Thomas E. Dube, Malware Target Recognition ,(2012)
Asaf Shabtai, Robert Moskovitch, Yuval Elovici, Chanan Glezer, Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey Information Security Technical Report. ,vol. 14, pp. 16- 29 ,(2009) , 10.1016/J.ISTR.2009.03.003
G.J. Tesauro, J.O. Kephart, G.B. Sorkin, Neural networks for computer virus recognition IEEE Intelligent Systems. ,vol. 11, pp. 5- 6 ,(1996) , 10.1109/64.511768
Thomas E. Dube, Richard A. Raines, Michael R. Grimaila, Kenneth W. Bauer, Steven K. Rogers, Malware Target Recognition of Unknown Threats IEEE Systems Journal. ,vol. 7, pp. 467- 477 ,(2013) , 10.1109/JSYST.2012.2221913
T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, S. Rogers, Malware target recognition via static heuristics Computers & Security. ,vol. 31, pp. 137- 147 ,(2012) , 10.1016/J.COSE.2011.09.002
Marcus A. Maloof, J. Zico Kolter, Learning to Detect and Classify Malicious Executables in the Wild Journal of Machine Learning Research. ,vol. 7, pp. 2721- 2744 ,(2006) , 10.5555/1248547.1248646
Andreas Moser, Christopher Kruegel, Engin Kirda, Limits of Static Analysis for Malware Detection annual computer security applications conference. pp. 421- 430 ,(2007) , 10.1109/ACSAC.2007.21