Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory

作者: Olaf Delgado-Friedrichs , Vanessa Robins , Adrian Sheppard

DOI: 10.1109/TPAMI.2014.2346172

关键词: Vertex (geometry)Digital imagePersistent homologyMorse theorySkeletonizationHomology (biology)Computer scienceDiscrete Morse theoryArtificial intelligenceVector fieldAlgorithmTheoretical computer science

摘要: … Following Kovalevsky [28], we model digital images by cubical complexes. In our setting, the voxels ði; j; kÞ2D are the vertices (0-cells) of the complex. Higher-dimensional cells are the …

参考文章(44)
Serge Beucher, Watershed, Hierarchical Segmentation and Waterfall Algorithm international symposium on memory management. pp. 69- 76 ,(1994) , 10.1007/978-94-011-1040-2_10
Hubert Wagner, Chao Chen, Erald Vuçini, Efficient Computation of Persistent Homology for Cubical Data Mathematics and Visualization. pp. 91- 106 ,(2012) , 10.1007/978-3-642-23175-9_7
Yukio Matsumoto, An Introduction to Morse Theory ,(2001)
David Günther, Jan Reininghaus, Hans-Peter Seidel, Tino Weinkauf, Notes on the Simplification of the Morse-Smale Complex Mathematics and Visualization. pp. 135- 150 ,(2014) , 10.1007/978-3-319-04099-8_9
Herbert Edelsbrunner, John Harer, The persistent morse complex segmentation of a 3-manifold 3DPH'09 Proceedings of the 2009 international conference on Modelling the Physiological Human. pp. 36- 50 ,(2009) , 10.1007/978-3-642-10470-1_4
Gunilla Borgefors, Ingela Nyström, Gabriella Sanniti di Baja, Skeletonizing Volume Objects Part 2: From Surface to Curve Skeleton Lecture Notes in Computer Science. pp. 220- 229 ,(1998) , 10.1007/BFB0033240
J. H. C. Whitehead, Simplicial Spaces, Nuclei and m -Groups Proceedings of the London Mathematical Society. ,vol. s2-45, pp. 243- 327 ,(1939) , 10.1112/PLMS/S2-45.1.243
Jyh-Ming Lien, John Keyser, Nancy M. Amato, Simultaneous shape decomposition and skeletonization Proceedings of the 2006 ACM symposium on Solid and physical modeling - SPM '06. pp. 219- 228 ,(2006) , 10.1145/1128888.1128919
Attila Gyulassy, Mark Duchaineau, Vijay Natarajan, Valerio Pascucci, Eduardo Bringa, Andrew Higginbotham, Bernd Hamann, Topologically Clean Distance Fields IEEE Transactions on Visualization and Computer Graphics. ,vol. 13, pp. 1432- 1439 ,(2007) , 10.1109/TVCG.2007.70603
Thomas Lewiner, Critical sets in discrete Morse theories: Relating Forman and piecewise-linear approaches Computer Aided Geometric Design. ,vol. 30, pp. 609- 621 ,(2013) , 10.1016/J.CAGD.2012.03.012