Image Denoising Using Variations of Perona-Malik Model with Different Edge Stopping Functions☆

作者: V. Kamalaveni , R. Anitha Rajalakshmi , K.A. Narayanankutty

DOI: 10.1016/J.PROCS.2015.08.087

关键词: Heat equationNoise reductionMathematical optimizationDiffusionEdge (geometry)Computer scienceAnisotropic diffusionImage gradientLevel setFilter (signal processing)Mathematical analysis

摘要: Abstract Anisotropic diffusion is used for both image enhancement and denoising. The Perona-Malik model makes use of anisotropic to filter out the noise. In rate controlled by edge stopping function. drawback that sharp edges fine details are not preserved well in denoised image. But can be using appropriate We have analysed effect different functions terms how efficient they preserving edges. found an function which stops from low gradient onwards preserves details. This property will also result lower evolution case level set methods. high preserve details, since blurred due diffusion. values threshold parameter than parameter. By utilizing or has zero insignificant value at gradient, we

参考文章(20)
Joachim Weickert, Coherence-Enhancing Diffusion Filtering International Journal of Computer Vision. ,vol. 31, pp. 111- 127 ,(1999) , 10.1023/A:1008009714131
Y.Q. Wang, Jichang Guo, Wufan Chen, Wenxue Zhang, Fast communication: Image denoising using modified Perona-Malik model based on directional Laplacian Signal Processing. ,vol. 93, pp. 2548- 2558 ,(2013) , 10.1016/J.SIGPRO.2013.02.020
Chourmouzios Tsiotsios, Maria Petrou, On the choice of the parameters for anisotropic diffusion in image processing Pattern Recognition. ,vol. 46, pp. 1369- 1381 ,(2013) , 10.1016/J.PATCOG.2012.11.012
Lina Septiana, Kang-Ping Lin, X-ray image enhancement using a modified anisotropic diffusion 2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014). pp. 1- 4 ,(2014) , 10.1109/ISBB.2014.6820940
Henry P. Kramer, Judith B. Bruckner, Iterations of a non-linear transformation for enhancement of digital images Pattern Recognition. ,vol. 7, pp. 53- 58 ,(1975) , 10.1016/0031-3203(75)90013-8
M Lindenbaum, M Fischer, A Bruckstein, On Gabor's contribution to image enhancement Pattern Recognition. ,vol. 27, pp. 1- 8 ,(1994) , 10.1016/0031-3203(94)90013-2
M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, Robust anisotropic diffusion IEEE Transactions on Image Processing. ,vol. 7, pp. 421- 432 ,(1998) , 10.1109/83.661192
Haiying Tian, Hongmin Cai, J. H. Lai, Xiaoyin Xu, Effective image noise removal based on difference eigenvalue 2011 18th IEEE International Conference on Image Processing. pp. 3357- 3360 ,(2011) , 10.1109/ICIP.2011.6116392
Stanley Osher, Leonid I. Rudin, Feature-oriented image enhancement using shock filters SIAM Journal on Numerical Analysis. ,vol. 27, pp. 919- 940 ,(1990) , 10.1137/0727053
Risheng Liu, Zhouchen Lin, Wei Zhang, Kewei Tang, Zhixun Su, Toward designing intelligent PDEs for computer vision: An optimal control approach Image and Vision Computing. ,vol. 31, pp. 43- 56 ,(2013) , 10.1016/J.IMAVIS.2012.09.004