An optimized generic cerebral tumor growth modeling framework by coupling biomechanical and diffusive models with treatment effects

作者: Ahmed Elazab , Ahmed M Anter , Hongmin Bai , Qingmao Hu , Zakir Hussain

DOI: 10.1016/J.ASOC.2019.04.034

关键词: Particle swarm optimizationAtlas (anatomy)Continuum mechanicsDiffusion MRIMedical imagingMagnetic resonance imagingBiomedical engineeringRadiation therapyChemotherapyMass effectCerebral TumorComputer science

摘要: Abstract Mathematical modeling of cerebral tumor growth is great importance in clinics. It can help understanding the physiology growth, future prognosis shape and volume, quantify aggressiveness, response to therapy. This be achieved at macroscopic level using medical imaging techniques (particularly, magnetic resonance (MRI) diffusion tensor (DTI)) complex mathematical models which are either diffusive or biomechanical. We propose an optimized generic framework that couples diffusivity infiltration with induced mass effect. Tumor cell captured a modified reaction-diffusion model logistic proliferation term. On other hand, effect modeled continuum mechanics formulation. In addition, we consider treatment effects both radiotherapy chemotherapy. The efficacy chemotherapy included via adaptively log-kill method tissue heterogeneity while considered linear quadratic model. Moreover, our efficiently utilizes imaging. Furthermore, optimize parameters patient-specific bio-inspired particle swarm optimization (PSO) algorithm. Our tested on atlas real MRI scans 8 low grade gliomas subjects. Experimental results show incorporates modelingprocess. simulated growths have high accuracy terms Dice coefficient (average 87.1%) Jaccard index (77.14%) when compared follow up (ground truth) as well.

参考文章(58)
Kristin R. Swanson, Ellsworth C. Alvord, Jr., J. D. Murray, Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery Acta Biotheoretica. ,vol. 50, pp. 223- 237 ,(2002) , 10.1023/A:1022644031905
Christian P. May, Eleni Kolokotroni, Georgios S. Stamatakos, Philippe Büchler, Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation. Progress in Biophysics & Molecular Biology. ,vol. 107, pp. 193- 199 ,(2011) , 10.1016/J.PBIOMOLBIO.2011.06.007
Jianjun Yuan, Lipei Liu, Qingmao Hu, Mathematical modeling of brain glioma growth using modified reaction-diffusion equation on brain MR images Computers in Biology and Medicine. ,vol. 43, pp. 2007- 2013 ,(2013) , 10.1016/J.COMPBIOMED.2013.09.023
Islem Rekik, Stéphanie Allassonnière, Olivier Clatz, Ezequiel Geremia, Erin Stretton, Hervé Delingette, Nicholas Ayache, Tumor growth parameters estimation and source localization from a unique time point: Application to low-grade gliomas Computer Vision and Image Understanding. ,vol. 117, pp. 238- 249 ,(2013) , 10.1016/J.CVIU.2012.11.001
Jan Unkelbach, Bjoern H Menze, Ender Konukoglu, Florian Dittmann, Matthieu Le, Nicholas Ayache, Helen A Shih, Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation Physics in Medicine and Biology. ,vol. 59, pp. 747- 770 ,(2014) , 10.1088/0031-9155/59/3/747
Alt Giese, Lan Kluwe, Britta Laube, Hildegard Meissner, Michael E. Berens, Manfred Westphal, Migration of human glioma cells on myelin. Neurosurgery. ,vol. 38, pp. 755- 764 ,(1996) , 10.1227/00006123-199604000-00026
A. Amelot, E. Stretton, H. Delingette, N. Ayache, S. Froelich, E. Mandonnet, Expert-validated CSF segmentation of MNI atlas enhances accuracy of virtual glioma growth patterns Journal of Neuro-oncology. ,vol. 121, pp. 381- 387 ,(2015) , 10.1007/S11060-014-1645-5