High-temperature, nonreacting flowfields generated by a hypersonic chemical laser nozzle

作者: Eric L. Petersen , Matthew J. A. Rickard , Richard P. Welle

DOI: 10.2514/2.6784

关键词: Hypersonic speedChemical laserNozzleOpticsMaterials science

摘要:

参考文章(7)
M. Braun-Unkhoff, C. Naumann, P. Frank, A Shock Tube Study of the Reaction CH3+O2 Shock Waves @ Marseille II. pp. 203- 208 ,(1995) , 10.1007/978-3-642-78832-1_34
J. F. Bott, N. Cohen, A shock tube study of the reaction of methyl radicals with hydroxyl radicals International Journal of Chemical Kinetics. ,vol. 23, pp. 1017- 1033 ,(1991) , 10.1002/KIN.550231106
D. J. Spencer, T. A. Jacobs, H. Mirels, R. W. F. Gross, Continuous-wave chemical laser International Journal of Chemical Kinetics. ,vol. 1, pp. 493- 494 ,(1970) , 10.1002/KIN.550010510
Robert Acebal, Hydrogen Fluoride vs Deuterium Fluoride Space-Based Laser Performance Comparison AIAA Journal. ,vol. 36, pp. 416- 419 ,(1998) , 10.2514/2.379
H. MIRELS, R. HOFLAND, W. S. KlNG, Simplified Model of CW Diffusion-Type Chemical Laser AIAA Journal. ,vol. 11, pp. 156- 164 ,(1972) , 10.2514/3.50447
Richard J. Driscoll, Effect of reactant-surface stretching on chemical laser performance AIAA Journal. ,vol. 22, pp. 65- 74 ,(1984) , 10.2514/3.8340
J. E. Broadwell, Effect of Mixing Rate on HF Chemical Laser Performance. Applied Optics. ,vol. 13, pp. 962- 967 ,(1974) , 10.1364/AO.13.000962