Logarithmic Lower Bounds in the Cell-Probe Model

作者: Mihai Patrascu , Erik D. Demaine

DOI: 10.1137/S0097539705447256

关键词: Disjoint setsMathematicsUpper and lower boundsCell-probe modelCombinatoricsLogarithmMatching (graph theory)ConnectivityParameterized complexityDiscrete mathematicsOmega

摘要: We develop a new technique for proving cell-probe lower bounds on dynamic data structures. This enables us to prove an amortized randomized $\Omega(\lg n)$ bound per operation several structural problems $n$ elements, including partial sums, connectivity among disjoint paths (or forest or graph), and other graph (by simple reductions). Such breaks long-standing barrier of n\,/\lg\lg any language membership problem. It also establishes the optimality existing structures, such as Sleator Tarjan's trees. first $\Omega(\log_B in external-memory model without assumptions structure (such comparison model). Our give query-update trade-off curve matched, e.g., by structures graphs. matching upper sums when parameterized word size maximum additive change update.

参考文章(37)
Paul Frederick Dietz, Optimal Algorithms for List Indexing and Subset Rank workshop on algorithms and data structures. pp. 39- 46 ,(1989) , 10.1007/3-540-51542-9_5
Thore Husfeldt, Theis Rauhe, Søren Skyum, Lower Bounds for Dynamic Transitive Closure, Planar Point Location, and Parentheses Matching scandinavian workshop on algorithm theory. pp. 198- 211 ,(1996) , 10.1007/3-540-61422-2_132
Wing-Kai Hon, Kunihiko Sadakane, Wing-Kin Sung, Succinct Data Structures for Searchable Partial Sums international symposium on algorithms and computation. ,vol. 2906, pp. 505- 516 ,(2003) , 10.1007/978-3-540-24587-2_52
Rajeev Raman, Venkatesh Raman, S. Srinivasa Rao, Succinct Dynamic Data Structures workshop on algorithms and data structures. pp. 426- 437 ,(2001) , 10.1007/3-540-44634-6_39
S. Alstrup, T. Husfeldt, T. Rauhe, Marked ancestor problems foundations of computer science. pp. 534- 543 ,(1998) , 10.1109/SFCS.1998.743504
Michael L. Fredman, A Lower Bound on the Complexity of Orthogonal Range Queries Journal of the ACM. ,vol. 28, pp. 696- 705 ,(1981) , 10.1145/322276.322281
Andrew C Yao, None, On the Complexity of Maintaining Partial Sums SIAM Journal on Computing. ,vol. 14, pp. 277- 288 ,(1985) , 10.1137/0214022
M. Ajtai, A lower bound for finding predecessors in Yao's cell probe model Combinatorica. ,vol. 8, pp. 235- 247 ,(1988) , 10.1007/BF02126797
Michael L. Fredman, The Complexity of Maintaining an Array and Computing Its Partial Sums Journal of the ACM. ,vol. 29, pp. 250- 260 ,(1982) , 10.1145/322290.322305
Paul Beame, Faith E. Fich, Optimal bounds for the predecessor problem and related problems symposium on the theory of computing. ,vol. 65, pp. 38- 72 ,(2002) , 10.1006/JCSS.2002.1822