Optimal Political Districting by Implicit Enumeration Techniques

作者: R. S. Garfinkel , G. L. Nemhauser

DOI: 10.1287/MNSC.16.8.B495

关键词: RedistrictingState (functional analysis)Compact spaceContiguityMathematicsSet (abstract data type)Mathematical optimizationPopulationEnumerationIBM

摘要: An algorithm is given which finds all optimal solutions, for a set of criteria, to political redistricting problems. Using “population units” as indivisible elements, the first phase generates feasible districts, where feasibility indicates contiguity, compactness and limited population deviation. The second that M districts “covers” each unit exactly once, minimizes maximum deviation any district from mean population. Computational results indicate states with 40 counties or fewer can be solved in less than 10 minutes on an IBM 7094. However, our attempt solve 55 county state was unsuccessful.

参考文章(7)
S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, P. A. Zitlau, Nonpartisan Political Redistricting by Computer Operations Research. ,vol. 13, pp. 998- 1006 ,(1965) , 10.1287/OPRE.13.6.998
M. L. Balinski, Integer Programming: Methods, Uses, Computations Management Science. ,vol. 12, pp. 253- 313 ,(1965) , 10.1287/MNSC.12.3.253
R. S. Garfinkel, G. L. Nemhauser, The Set-Partitioning Problem: Set Covering with Equality Constraints Operations Research. ,vol. 17, pp. 848- 856 ,(1969) , 10.1287/OPRE.17.5.848
Arthur M. Geoffrion, Integer Programming by Implicit Enumeration and Balas’ Method Siam Review. ,vol. 9, pp. 178- 190 ,(1967) , 10.1137/1009031
M. L. Balinski, R. E. Quandt, On an Integer Program for a Delivery Problem Operations Research. ,vol. 12, pp. 300- 304 ,(1964) , 10.1287/OPRE.12.2.300
James D. Thoreson, John M. Liittschwager, Computers in behavioral science. Legislative districting by computer simulation Behavioral Science. ,vol. 12, pp. 237- 247 ,(1967) , 10.1002/BS.3830120309