Medical entity extraction from patient data

作者: Radu Stefan Niculescu , R. Bharat Rao , Ciprian Dan Raileanu , Lucian Vlad Lita

DOI:

关键词: Computer scienceSet (abstract data type)Medical informationArtificial intelligenceParsingNatural language processingInformation retrievalOntology (information science)Patient dataClass (philosophy)

摘要: Members of a medical entity class are extracted (24) from patient data. A semi-supervised approach uses one or more initial terms (22), such as an ontology, for given category canonical entity. larger set is the information. In example, extraction performed using lexical surface form features (26), rather than syntactical parsing

参考文章(8)
Alexey Nevidomskiy, Edel Greevy, Pai-Fang Franny Hsiao, Hisham Emad Elshishiny, Alexander Troussov, Pavel Volkov, Method and System for Building and Contracting a Linguistic Dictionary ,(2005)
William A. Landi, R. Bharat Rao, Sriram Krishnan, Patient data mining improvements ,(2006)
John P. Pestian, Robert A. Kowatch, Pawel Matykiewicz, Jacqueline M. Grupp-Phelan, Wlodzislaw Duch, Tracy A. Glauser, Processing text with domain-specific spreading activation methods ,(2008)
Radu Stefan Niculescu, Sathyakama Sandilya, Christopher Jude Amies, R. Bharat Rao, Arun Kumar Goel, Thomas R. Warrick, Patient data mining ,(2002)
Thomas J. DePlonty, Alwin B. Carus, Semantic exploration and discovery ,(2007)