Generalized poisson integrals and regularity of functions

作者: Hikosaburo Komatsu

DOI: 10.1007/BFB0067108

关键词: MathematicsPoisson distributionInfinitesimal generatorPoisson kernelFunction (mathematics)Besov spaceSemigroupBanach spaceElliptic operatorPure mathematics

摘要: The classical Poisson integral may be regarded as the semigroup of operators generated by - √−Δ. author shows that −Δ replaced a wider class elliptic and extends Hardy's theory saying regularity function is measured behavior integral.

参考文章(20)
Tosinobu Muramatu, Products of fractional powers of operators(Dedicated to Professor Kosaku Yosida on his 60th birthday) Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. ,vol. 17, pp. 581- 590 ,(1970)
Paul Leo Butzer, Hubert Berens, Semi-groups of operators and approximation ,(1967)
G. H. HARDY, J. E. LITTLEWOOD, THEOREMS CONCERNING MEAN VALUES OF ANALYTIC OR HARMONIC FUNCTIONS Quarterly Journal of Mathematics. ,vol. 1, pp. 221- 256 ,(1941) , 10.1093/QMATH/OS-12.1.221
Hikosaburo Komatsu, Fractional powers of operators. Pacific Journal of Mathematics. ,vol. 19, pp. 285- 346 ,(1966) , 10.2140/PJM.1966.19.285
Hikosaburo Komatsu, Fractional powers of operators. II. Interpolation spaces Pacific Journal of Mathematics. ,vol. 21, pp. 89- 111 ,(1967) , 10.2140/PJM.1967.21.89
Freidrich Riesz, Über die Randwerte einer analytischen Funktion Mathematische Zeitschrift. ,vol. 18, pp. 87- 95 ,(1923) , 10.1007/BF01192397
G. H. Hardy, Weierstrass’s non-differentiable function Transactions of the American Mathematical Society. ,vol. 17, pp. 301- 325 ,(1916) , 10.1090/S0002-9947-1916-1501044-1
Hikosaburo KOMATSU, Semi-groups of operators in locally convex spaces Journal of The Mathematical Society of Japan. ,vol. 16, pp. 230- 262 ,(1964) , 10.2969/JMSJ/01630230