作者: Joseph JaJa , Christian W. Mortensen , Qingmin Shi
DOI: 10.1007/978-3-540-30551-4_49
关键词: Logarithm 、 Vector space 、 Fusion tree 、 Mathematics 、 Dimension (graph theory) 、 Counting problem 、 Binary logarithm 、 Linear space 、 Algorithm 、 Algorithmics
摘要: We present linear-space sub-logarithmic algorithms for handling the 3-dimensional dominance reporting and 2-dimensional counting problems Under RAM model as described in [M L Fredman D E Willard “Surpassing information theoretic bound with fusion trees”, Journal of Computer System Sciences, 47:424–436, 1993], our achieve O(log n/loglog n+f) query time problem, where f is output size, n) problem extend these results to any constant dimension d ≥ 3, achieving O(n(log n)d−3) space O((log n)d−2+ f) case n)d−2) n)d−1) case.