CONVEX-TRANSITIVE DOUGLAS ALGEBRAS

作者: Jarno Talponen , María J. Martín

DOI:

关键词: Discrete mathematicsIsometry groupPure mathematicsSymmetry (geometry)Banach spaceHomomorphismMathematicsInvariant (mathematics)Unit sphereGroup (mathematics)Unit disk

摘要: The convex-transitivity property can be seen as a convex generalization of the almost transitive (or quasi-isotropic) group action isometry Banach space on its unit sphere. We will show that certain algebras, including conformal invariant Douglas are weak-star convex-transitive. Geometrically speaking, this means investigated spaces highly symmetric. Moreover, it turns out symmetry is satisfied by using only 'inner' isometries, i.e. subgroup consisting isometries which homomorphisms algebra. In fact, weighted composition operators arising from function theory disk do. Some interesting examples provided at end.

参考文章(34)
Peter L. Duren, Theory of Hp Spaces ,(2000)
Vaclav Zizler, Petr Habala, Marián J. Fabian, Petr Hájek, Vicente Montesinos, Banach space theory : the basis for linear and nonlinear analysis Springer. ,(2011)
Peter L. Duren, Theory of H[p] spaces Academic Press. ,(1970)
J. A. Cima, W. R. Wogen, On isometries of the Bloch space Illinois Journal of Mathematics. ,vol. 24, pp. 313- 316 ,(1980) , 10.1215/IJM/1256047724
Donald E. Marshall, Blaschke products generate $H^\infty$ Bulletin of the American Mathematical Society. ,vol. 82, pp. 494- 497 ,(1976) , 10.1090/S0002-9904-1976-14071-2
James E. Jamison, Richard J. Fleming, Isometries on Banach Spaces: function spaces ,(2002)
María J. Martín, Dragan Vukotić, Isometries of the Dirichlet space among the composition operators Proceedings of the American Mathematical Society. ,vol. 134, pp. 1701- 1705 ,(2005) , 10.1090/S0002-9939-05-08182-7
Angel Rodríguez Palacios, Julio Becerra Guerrero, Transitivity of the Norm on Banach Spaces Extracta mathematicae. ,vol. 17, pp. 1- 58 ,(2002)
Carl C Cowen, Barbara D. MacCluer, Composition Operators on Spaces of Analytic Functions ,(1995)
A. I. Markushevich, Richard A. Silverman, J. Gillis, Theory of Functions of a Complex Variable ,(1985)