作者: S. Das Sarma , S. V. Ghaisas , J. M. Kim
关键词: Physics 、 Dynamic scaling 、 Non-equilibrium thermodynamics 、 Function (mathematics) 、 Diffusion (business) 、 Statistical physics 、 Kinetic growth 、 Kinetic energy 、 Scaling
摘要: We argue that recently introduced models of surface-diffusion-driven nonequilibrium growth are characterized by critical roughness exponents (\ensuremath{\alpha}) exceeding unity (``super-rough'' growth) exhibit an ``anomalous'' form dynamic scaling whose asymptotic behavior is different from the usual self-affine kinetic with \ensuremath{\alpha}1. propose a generalized function for super-rough (\ensuremath{\alpha}g1) and demonstrate its applicablity to several discrete models.