Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters

作者: Giorgio Grisetti , Cyrill Stachniss , Wolfram Burgard

DOI: 10.1109/TRO.2006.889486

关键词: Computer scienceComputer visionMonte Carlo localizationArtificial intelligenceMobile robotGridParticle filterFilter (signal processing)ResamplingRobotSimultaneous localization and mappingAlgorithm

摘要: … Murphy, Doucet, and colleagues [2], [8] introduced Rao-Blackwellized particle filters (… the Rao-Blackwellized approaches is their complexity, measured in terms of the number of particles …

参考文章(42)
Frank Dellaert, Square Root SAM robotics science and systems. ,vol. 01, pp. 177- 184 ,(2005) , 10.15607/RSS.2005.I.024
Dirk Hähnel, Sebastian Thrun, Ben Wegbreit, Wolfram Burgard, Towards Lazy Data Association in SLAM ISRR. pp. 421- 431 ,(2005) , 10.1007/11008941_45
Simon J. Godsill, Arnaud Doucet, Christophe Andrieu, On sequential simulation-based methods for Bayesian filtering Statistics and Computing. ,(1998)
F. Dellaert, D. Fox, W. Burgard, S. Thrun, Monte Carlo localization for mobile robots international conference on robotics and automation. ,vol. 2, pp. 1322- 1328 ,(1999) , 10.1109/ROBOT.1999.772544
H. P. Moravec, Sensor fusion in certainty grids for mobile robots Ai Magazine. ,vol. 9, pp. 61- 74 ,(1988) , 10.1007/978-3-642-74567-6_19
F. Lu, E. Milios, Globally Consistent Range Scan Alignment for Environment Mapping Autonomous Robots. ,vol. 4, pp. 333- 349 ,(1997) , 10.1023/A:1008854305733
Austin Eliazar, Ronald Parr, DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks international joint conference on artificial intelligence. pp. 1135- 1142 ,(2003)