A Cutting Plane Algorithm for the Linear Ordering Problem

作者: Martin Grötschel , Michael Jünger , Gerhard Reinelt

DOI: 10.1287/OPRE.32.6.1195

关键词: Linear orderingAlgorithmScheduling (computing)Mathematical optimizationHeuristicsInteger programmingCutting plane algorithmBranch and boundMathematicsCutting-plane methodTriangulation

摘要: The linear ordering problem is an NP-hard combinatorial optimization with a large number of applications including triangulation input-output matrices, archaeological senation, minimizing total weighted completion time in one-machine scheduling, and aggregation individual preferences. In former paper, we have investigated the facet structure 0/1-polytope associated problem. Here report on new algorithm that based these theoretical results. main part cutting plane procedure using defining inequalities. This combined various heuristics branch bound techniques. Our computational results compare favorably existing codes. particular, could triangulate all size up to 60 × 60, available us within acceptable bounds.

参考文章(13)
H. P. Young, On permutations and permutation polytopes Mathematical Programming Studies. pp. 128- 140 ,(1978) , 10.1007/BFB0121198
J. F. Marcotorchino, P. Michaud, Optimisation en analyse ordinale des données Masson. ,(1979)
Jan Karel Lenstra, Sequencing by enumerative methods ,(1977)
H.W. Lenstra, The acyclic subgraph problem Stichting Mathematisch Centrum. Mathematische Besliskunde. pp. 1- 45 ,(1973)
Fred Glover, T. Klastorin, D. Kongman, Optimal Weighted Ancestry Relationships Management Science. ,vol. 20, pp. 1190- 1193 ,(1974) , 10.1287/MNSC.20.8.1190
JOHN S. DECANI, Maximum likelihood paired comparison ranking by linear programming Biometrika. ,vol. 56, pp. 537- 545 ,(1969) , 10.1093/BIOMET/56.3.537
R. Kaas, A branch and bound algorithm for the acyclic subgraph problem European Journal of Operational Research. ,vol. 8, pp. 355- 362 ,(1981) , 10.1016/0377-2217(81)90005-9
M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization Combinatorica. ,vol. 1, pp. 169- 197 ,(1981) , 10.1007/BF02579273
Martin Grötschel, Michael Jünger, Gerhard Reinelt, Facets of the linear ordering polytope Mathematical Programming. ,vol. 33, pp. 43- 60 ,(1985) , 10.1007/BF01582010
B. Korte, W. Oberhofer, Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblems Unternehmensforschung Operations Research - Recherche Opérationnelle. ,vol. 12, pp. 217- 231 ,(1968) , 10.1007/BF01918332