Constrained clustering with a complex cluster structure

作者: Marek Śmieja , Magdalena Wiercioch

DOI: 10.1007/S11634-016-0254-X

关键词: AlgorithmCURE data clustering algorithmClustering high-dimensional dataPattern recognitionCorrelation clusteringArtificial intelligenceMathematicsConstrained clusteringSingle-linkage clusteringCluster analysisk-medians clusteringFuzzy clustering

摘要: In this contribution we present a novel constrained clustering method, Constrained with complex cluster structure (C4s), which incorporates equivalence constraints, both positive and negative, as the background information. C4s is capable of discovering groups arbitrary structure, e.g. multi-modal distribution, since at initial stage classes elements generated by constraints are split into smaller parts. This provides detailed description elements, in relation. order to enable an automatic detection number groups, cross-entropy applied for each partitioning process. Experiments show that proposed method achieves significantly better results than previous approaches. The advantage our algorithm increases when focusing on finding partitions clusters.

参考文章(51)
P. Spurek, J. Tabor, E. Zając, Detection of Disk-Like Particles in Electron Microscopy Images computer recognition systems. pp. 411- 417 ,(2013) , 10.1007/978-3-319-00969-8_40
Fatima Merchant, Qiang Wu, Kenneth Castleman, Microscope Image Processing ,(2010)
Berend Olivier, Willem Soudijn, Ineke van Wijngaarden, The 5-HT1A receptor and its ligands: structure and function Progress in Drug Research. ,vol. 52, pp. 103- 165 ,(1999) , 10.1007/978-3-0348-8730-4_3
Marek Śmieja, Jacek Tabor, Image Segmentation with Use of Cross-Entropy Clustering ∗ computer recognition systems. pp. 403- 409 ,(2013) , 10.1007/978-3-319-00969-8_39
Hien D. Nguyen, Geoffrey J. McLachlan, Maximum likelihood estimation of Gaussian mixture models without matrix operations Advanced Data Analysis and Classification. ,vol. 9, pp. 371- 394 ,(2015) , 10.1007/S11634-015-0209-7
Marek Śmieja, Jacek Tabor, Entropy Approximation in Lossy Source Coding Problem Entropy. ,vol. 17, pp. 3400- 3418 ,(2015) , 10.3390/E17053400
P. Berkhin, A Survey of Clustering Data Mining Techniques Grouping Multidimensional Data. pp. 25- 71 ,(2006) , 10.1007/3-540-28349-8_2
Krzysztof Misztal, Krzysztof Misztal, Jacek Tabor, Detection of Elliptical Shapes via Cross-Entropy Clustering iberian conference on pattern recognition and image analysis. ,vol. 7887, pp. 656- 663 ,(2013) , 10.1007/978-3-642-38628-2_78
Ruchi J. Vyas, Jerry Gao, Leo K. Cheng, Peng Du, An Image-Based Model of the Interstitial Cells of Cajal Network in the Gastrointestinal Tract Springer, Cham. pp. 5- 8 ,(2014) , 10.1007/978-3-319-02913-9_2
E. F. Collingwood, A. J. Lohwater, The Theory of Cluster Sets ,(1966)