Scalable data clustering using GPUs

作者: Andrew D. Pangborn

DOI:

关键词: Computational scienceCUDAScalabilityGeneral-purpose computing on graphics processing unitsParallel computingComputer scienceCluster analysis

摘要:

参考文章(16)
J.F. Kolen, T. Hutcheson, Reducing the time complexity of the fuzzy c-means algorithm IEEE Transactions on Fuzzy Systems. ,vol. 10, pp. 263- 267 ,(2002) , 10.1109/91.995126
Yuliya Tarabalka, Trym Vegard Haavardsholm, Ingebjørg Kåsen, Torbjørn Skauli, Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing Journal of Real-time Image Processing. ,vol. 4, pp. 287- 300 ,(2009) , 10.1007/S11554-008-0105-X
Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Kevin Skadron, A performance study of general-purpose applications on graphics processors using CUDA Journal of Parallel and Distributed Computing. ,vol. 68, pp. 1370- 1380 ,(2008) , 10.1016/J.JPDC.2008.05.014
N. S. L. Phani Kumar, Sanjiv Satoor, Ian Buck, Fast Parallel Expectation Maximization for Gaussian Mixture Models on GPUs Using CUDA high performance computing and communications. pp. 103- 109 ,(2009) , 10.1109/HPCC.2009.45
Gene M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities Proceedings of the April 18-20, 1967, spring joint computer conference on - AFIPS '67 (Spring). pp. 483- 485 ,(1967) , 10.1145/1465482.1465560
John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach ,(1989)
John L. Gustafson, Reevaluating Amdahl's law Communications of the ACM. ,vol. 31, pp. 532- 533 ,(1988) , 10.1145/42411.42415
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
R. A. FISHER, THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS Annals of Human Genetics. ,vol. 7, pp. 179- 188 ,(1936) , 10.1111/J.1469-1809.1936.TB02137.X