Some Properties of RBF Network with Applications to System Identification

作者: M. Y. Mashor

DOI:

关键词: Basis functionOverfittingSystem identificationRelation (database)Network expansionNetwork structureProbabilistic neural networkEngineeringArtificial intelligence

摘要: Performance of RBF network depends on the choice basis functions, input nodes, hidden nodes and so on. Hence, study these components is important for selecting a good structure. This paper investigates properties in relation to system identification. Network such as expansion, function, assignment, underfitting overfitting were investigated.

参考文章(13)
David Lowe, David S. Broomhead, Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks Complex Systems. ,vol. 2, pp. 321- 355 ,(1988)
X. Ye, N.K. Loh, Dynamic System Identification using Recurrent Radial Basis Function Network american control conference. pp. 2912- 2916 ,(1993) , 10.23919/ACC.1993.4793433
Lennart Ljung, Torsten Söderström, Theory and Practice of Recursive Identification ,(1983)
Nasser E. Nahi, Estimation Theory and Applications ,(1969)
S.A. Billings, W.S.F. Voon, Structure detection and model validity tests in the identification of nonlinear systems IEE Proceedings D Control Theory and Applications. ,vol. 130, pp. 193- 199 ,(1983) , 10.1049/IP-D:19830034
S. CHEN, S. A. BILLINGS, P. M. GRANT, Recursive hybrid algorithm for non-linear system identification using radial basis function networks International Journal of Control. ,vol. 55, pp. 1051- 1070 ,(1992) , 10.1080/00207179208934272
S. CHEN, S. A. BILLINGS, C. F. N. COWAN, P. M. GRANT, Non-linear systems identification using radial basis functions International Journal of Systems Science. ,vol. 21, pp. 2513- 2539 ,(1990) , 10.1080/00207729008910567
S. Elanayar V.T., Y.C. Shin, Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems IEEE Transactions on Neural Networks. ,vol. 5, pp. 594- 603 ,(1994) , 10.1109/72.298229
J. D. Powell, Radial basis function approximations to polynomials Numerical analysis 1987. pp. 223- 241 ,(1989)