GIS-Based Neural Network Modeling to Predict Suitable Area for Beetroot in Sri Lanka: Towards Sustainable Agriculture

作者: P.K.S.C. Jayasinghe , Masao Yoshida

DOI: 10.11178/JDSA.4.165

关键词: Land useNeural network modelingSri lankaWater resource managementArtificial neural networkLand suitabilitySustainabilityComputer scienceSustainable agriculture

摘要:

参考文章(13)
D L Civco, J Zhou, Using Genetic Learning Neural Networks for Spatial Decision Making in GIs Photogrammetric Engineering and Remote Sensing. ,vol. 52, pp. 1287- 1295 ,(1996)
María P. González, José L. Zapico, Seismic damage identification in buildings using neural networks and modal data Computers & Structures. ,vol. 86, pp. 416- 426 ,(2008) , 10.1016/J.COMPSTRUC.2007.02.021
Yiannis Tsompanakis, Nikos D. Lagaros, Prodromos N. Psarropoulos, Evaggelos C. Georgopoulos, Simulating the seismic response of embankments via artificial neural networks Advances in Engineering Software. ,vol. 40, pp. 640- 651 ,(2009) , 10.1016/J.ADVENGSOFT.2008.11.005
Kurt Hornik, Approximation capabilities of multilayer feedforward networks Neural Networks. ,vol. 4, pp. 251- 257 ,(1991) , 10.1016/0893-6080(91)90009-T
Liu Yanfang, Jiao Limin, The application of BP networks to land suitability evaluation Geo-spatial Information Science. ,vol. 5, pp. 55- 61 ,(2002) , 10.1007/BF02863495
Zeke S.H. Chan, H.W. Ngan, A.B. Rad, A.K. David, N. Kasabov, Short-term ANN load forecasting from limited data using generalization learning strategies Neurocomputing. ,vol. 70, pp. 409- 419 ,(2006) , 10.1016/J.NEUCOM.2005.12.131
P. A. BLAMIRE, The influence of relative sample size in training artificial neural networks International Journal of Remote Sensing. ,vol. 17, pp. 223- 230 ,(1996) , 10.1080/01431169608949000
P. K. S. C Jayasinghe, Takemi Machida, Web-Based GIS Online Consulting System with Crop-Land Suitability Identification Agricultural Information Research. ,vol. 17, pp. 13- 19 ,(2008) , 10.3173/AIR.17.13
B J Turner, A K Skidmore, E Knowles, W Brinkhof, Performance of a neural network: mapping forests using GIS and remotely sensed data Photogrammetric Engineering and Remote Sensing. ,vol. 63, pp. 501- 514 ,(1997)