Generalizing Geometry - Algebroids and Sigma Models

作者: T. Strobl , A. Kotov

DOI:

关键词: Gauge theoryYang–Mills existence and mass gapTheoretical physicsLie algebraSigmaGeneralizationDirac (software)PhysicsLie algebroidCharacteristic class

摘要: In this contribution we review some of the interplay between sigma models in theoretical physics and novel geometrical structures such as Lie (n-)algebroids. The first part article contains mathematical background, definition various algebroids well Dirac structures, a joint generalization Poisson, presymplectic, but also complex structures. Proofs are given detail. second deals with models. Topological ones, particular AKSZ models, generalizations Poisson to higher dimensions respectively, physical that reduce standard Yang Mills theories for "flat" choice algebra: algebroid possible action functionals nonabelian gerbes general gauge theories. Characteristic classes associated principal bundles mentioned.

参考文章(18)
Maxim Zabzine, Lectures on generalized complex geometry and supersymmetry Archivum Mathematicum. ,vol. 42, pp. 119- 146 ,(2006)
Zhang-Ju Liu, Alan Weinstein, Ping Xu, Manin triples for Lie bialgebroids Journal of Differential Geometry. ,vol. 45, pp. 547- 574 ,(1997) , 10.4310/JDG/1214459842
Markus Hansen, Thomas Strobl, First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form arXiv: High Energy Physics - Theory. ,(2009) , 10.1142/9789814277839_0008
Alberto S. Cattaneo, Giovanni Felder, On the AKSZ Formulation of the Poisson Sigma Model Letters in Mathematical Physics. ,vol. 56, pp. 163- 179 ,(2001) , 10.1023/A:1010963926853
Albert Schwarz, Semiclassical approximation in Batalin-Vilkovisky formalism Communications in Mathematical Physics. ,vol. 158, pp. 373- 396 ,(1993) , 10.1007/BF02108080
K. Gawȩdzki, A. Kupiainen, Coset Construction from Functional Integrals Nuclear Physics. ,vol. 320, pp. 625- 668 ,(1989) , 10.1016/0550-3213(89)90015-1
C. Mayer, T. Strobl, Lie Algebroid Yang–Mills with matter fields Journal of Geometry and Physics. ,vol. 59, pp. 1613- 1623 ,(2009) , 10.1016/J.GEOMPHYS.2009.07.018
Peter Schaller, Thomas Strobl, Alexei Kotov, Dirac sigma models Communications in Mathematical Physics. ,vol. 260, pp. 455- 480 ,(2005) , 10.1007/S00220-005-1416-4
Francesco Bonechi, Maxim Zabzine, Lie algebroids, Lie groupoids and TFT Journal of Geometry and Physics. ,vol. 57, pp. 731- 744 ,(2007) , 10.1016/J.GEOMPHYS.2006.05.007
Edward Witten, Nonabelian Bosonization in Two-Dimensions Communications in Mathematical Physics. ,vol. 92, pp. 455- 472 ,(1984) , 10.1007/BF01215276