DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila.

作者: Semih Günel , Helge Rhodin , Daniel Morales , João Campagnolo , Pavan Ramdya

DOI: 10.7554/ELIFE.48571

关键词: SoftwareDeep learningLevel of detailPoseComputer scienceComputer vision3D pose estimationAppendageActive learning (machine learning)Artificial intelligenceTracking (particle physics)

摘要: Studying how neural circuits orchestrate limbed behaviors requires the precise measurement of positions each appendage in three-dimensional (3D) space. Deep networks can estimate two-dimensional (2D) pose freely behaving and tethered animals. However, unique challenges associated with transforming these 2D measurements into reliable 3D poses have not been addressed for small animals including fly, Drosophila melanogaster. Here, we present DeepFly3D, a software that infers tethered, adult using multiple camera images. DeepFly3D does require manual calibration, uses pictorial structures to automatically detect correct estimation errors, active learning iteratively improve performance. We demonstrate more accurate unsupervised behavioral embedding joint angles rather than commonly used data. Thus, enables automated acquisition at an unprecedented level detail variety biological applications.

参考文章(45)
Yair Weiss, Kevin P. Murphy, Michael I. Jordan, Loopy belief propagation for approximate inference: an empirical study uncertainty in artificial intelligence. pp. 467- 475 ,(1999)
Stefanie Hampel, Romain Franconville, Julie H Simpson, Andrew M Seeds, A neural command circuit for grooming movement control eLife. ,vol. 4, ,(2015) , 10.7554/ELIFE.08758
Mel B. Feany, Welcome W. Bender, A Drosophila model of Parkinson's disease Nature. ,vol. 404, pp. 394- 398 ,(2000) , 10.1038/35006074
Salil S. Bidaye, Christian Machacek, Yang Wu, Barry J. Dickson, Neuronal Control of Drosophila Walking Direction Science. ,vol. 344, pp. 97- 101 ,(2014) , 10.1126/SCIENCE.1249964
Géry Casiez, Nicolas Roussel, Daniel Vogel, 1 € filter Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems - CHI '12. pp. 2527- 2530 ,(2012) , 10.1145/2207676.2208639
John A. Bender, Elaine M. Simpson, Roy E. Ritzmann, Computer-Assisted 3D Kinematic Analysis of All Leg Joints in Walking Insects PLoS ONE. ,vol. 5, pp. e13617- ,(2010) , 10.1371/JOURNAL.PONE.0013617
Pedro F. Felzenszwalb, Daniel P. Huttenlocher, Pictorial Structures for Object Recognition International Journal of Computer Vision. ,vol. 61, pp. 55- 79 ,(2005) , 10.1023/B:VISI.0000042934.15159.49
Nathan C Klapoetke, Yasunobu Murata, Sung Soo Kim, Stefan R Pulver, Amanda Birdsey-Benson, Yong Ku Cho, Tania K Morimoto, Amy S Chuong, Eric J Carpenter, Zhijian Tian, Jun Wang, Yinlong Xie, Zhixiang Yan, Yong Zhang, Brian Y Chow, Barbara Surek, Michael Melkonian, Vivek Jayaraman, Martha Constantine-Paton, Gane Ka-Shu Wong, Edward S Boyden, Independent optical excitation of distinct neural populations Nature Methods. ,vol. 11, pp. 338- 346 ,(2014) , 10.1038/NMETH.2836
Daniel A. Dombeck, Anton N. Khabbaz, Forrest Collman, Thomas L. Adelman, David W. Tank, Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice Neuron. ,vol. 56, pp. 43- 57 ,(2007) , 10.1016/J.NEURON.2007.08.003