Tree algebras over topological vector spaces in rough path theory

作者: Thomas Cass , Martin P. Weidner

DOI:

关键词: Dual spaceMathematicsNatural topologyTopological algebraFunction spaceTopological spaceDiscrete mathematicsDual pairTopologyTopological vector spaceLocally convex topological vector space

摘要: We work with non-planar rooted trees which have a label set given by an arbitrary vector space $V$. By equipping $V$ complete locally convex topology, we show how natural topology is induced on the tree algebra over In this context, introduce Grossman-Larson and Connes-Kreimer topological Hopf algebras $V$, prove that they form dual pair in certain sense. As application define class of branched rough paths general Banach space, propose new definition solution to differential equation (RDE) driven one these paths. equivalence our Davie-Friz-Victoir-type definition, version widely used for RDEs geometric drivers, comment applications manifold-valued solutions.

参考文章(29)
Nicolas B. Victoir, Peter K. Friz, Multidimensional Stochastic Processes as Rough Paths ,(2010)
Ismaël Bailleul, Flows driven by rough paths Revista Matematica Iberoamericana. ,vol. 31, pp. 901- 934 ,(2015) , 10.4171/RMI/858
Christophe Reutenauer, Free Lie Algebras ,(1993)
Martin Hairer, On Malliavinʼs proof of Hörmanderʼs theorem Bulletin Des Sciences Mathematiques. ,vol. 135, pp. 650- 666 ,(2011) , 10.1016/J.BULSCI.2011.07.007
Hiroshi Sugita, On a characterization of the Sobolev spaces over an abstract Wiener space Journal of Mathematics of Kyoto University. ,vol. 25, pp. 717- 725 ,(1985) , 10.1215/KJM/1250521019
Andreas Kriegl, Peter W. Michor, The Convenient Setting of Global Analysis ,(1997)
Alain Connes, Dirk Kreimer, Hopf Algebras, Renormalization and Noncommutative Geometry Communications in Mathematical Physics. ,vol. 199, pp. 203- 242 ,(1998) , 10.1007/S002200050499