The structure of a complete phytochrome sensory module in the Pr ground state.

作者: L.-O. Essen , J. Mailliet , J. Hughes

DOI: 10.1073/PNAS.0806477105

关键词: PhotoswitchPhytochromeProtein structureBiologyBilinBiochemistryAdenylyl cyclasePhycocyanobilinCyanobacteriochromeBiophysicsChromophore

摘要: Phytochromes are red/far-red photochromic biliprotein photoreceptors, which in plants regulate seed germination, stem extension, flowering time, and many other light effects. However, the structure/functional basis of phytochrome photoswitch is still unclear. Here, we report ground state structure complete sensory module Cph1 from cyanobacterium Synechocystis 6803. Although phycocyanobilin (PCB) chromophore attached to Cys-259 as expected, paralleling situation plant phytochromes but contrasting that bacteriophytochromes, ZZZssa conformation does not correspond expected Raman spectroscopy. We show PHY domain, previously considered unique phytochromes, structurally a member GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) family. Indeed, tandem-GAF dumbbell revealed for modules remarkably similar regulatory domains cyclic nucleotide (cNMP) phosphodiesterases adenylyl cyclases. A feature long, tongue-like protrusion domain seals pocket stabilizes photoactivated far-red-absorbing (Pfr). The tongue carries conserved PRxSF motif, an arginine finger points into close ring D forming salt bridge with aspartate residue. present provides framework light-driven signal transmission phytochromes.

参考文章(53)
W. L. Delano, The PyMOL Molecular Graphics System DeLano Scientific. ,(2002)
T D Elich, J C Lagarias, Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro. Journal of Biological Chemistry. ,vol. 264, pp. 12902- 12908 ,(1989) , 10.1016/S0021-9258(18)51573-8
Seth J Davis, Alexander V Vener, Richard D Vierstra, Bacteriophytochromes: Phytochrome-Like Photoreceptors from Nonphotosynthetic Eubacteria Science. ,vol. 286, pp. 2517- 2520 ,(1999) , 10.1126/SCIENCE.286.5449.2517
S. E. Martinez, S. Bruder, A. Schultz, N. Zheng, J. E. Schultz, J. A. Beavo, J. U. Linder, Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: Modes of ligand binding and dimerization Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 3082- 3087 ,(2005) , 10.1073/PNAS.0409913102
W. Rudiger, F. Thummler, E. Cmiel, S. Schneider, Chromophore structure of the physiologically active form (P(fr)) of phytochrome. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 80, pp. 6244- 6248 ,(1983) , 10.1073/PNAS.80.20.6244
Jon Hughes, Tilman Lamparter, Franz Mittmann, Elmar Hartmann, Wolfgang Gärtner, Annegret Wilde, Thomas Börner, A prokaryotic phytochrome Nature. ,vol. 386, pp. 663- 663 ,(1997) , 10.1038/386663A0
Maria Andrea Mroginski, Daniel Horacio Murgida, Peter Hildebrandt, Calculation of vibrational spectra of linear tetrapyrroles. 4. Methine bridge C-H out-of-plane modes. Journal of Physical Chemistry A. ,vol. 110, pp. 10564- 10574 ,(2006) , 10.1021/JP063128X
David von Stetten, Sven Seibeck, Norbert Michael, Patrick Scheerer, Maria Andrea Mroginski, Daniel H. Murgida, Norbert Krauss, Maarten P. Heyn, Peter Hildebrandt, Berthold Borucki, Tilman Lamparter, Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation. Journal of Biological Chemistry. ,vol. 282, pp. 2116- 2123 ,(2007) , 10.1074/JBC.M608878200
Jeremiah R. Wagner, Joseph S. Brunzelle, Katrina T. Forest, Richard D. Vierstra, A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome Nature. ,vol. 438, pp. 325- 331 ,(2005) , 10.1038/NATURE04118
Chung-Mo Park, Jae-Yoon Shim, Song-Sook Yang, Jeong-Gu Kang, Jeong-Il Kim, Zigmund Luka, Pill-Soon Song, None, Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1 Biochemistry. ,vol. 39, pp. 6349- 6356 ,(2000) , 10.1021/BI992916S