MtNet: A Multi-Task Neural Network for Dynamic Malware Classification

作者: Wenyi Huang , Jack W. Stokes

DOI: 10.1007/978-3-319-40667-1_20

关键词: Task (project management)Deep learningTest setWord error rateComputer scienceBinary classificationArtificial intelligenceMalwareData miningBinary numberArtificial neural networkMachine learning

摘要: In this paper, we propose a new multi-task, deep learning architecture for malware classification for the binary (ie malware versus benign) malware classification task. All models are …

参考文章(24)
Max Jaderberg, Andrea Vedaldi, Andrew Zisserman, Deep Features for Text Spotting european conference on computer vision. pp. 512- 528 ,(2014) , 10.1007/978-3-319-10593-2_34
Răzvan Benchea, Dragoş Teodor Gavriluţ, None, Combining Restricted Boltzmann Machine and One Side Perceptron for Malware Detection international conference on conceptual structures. pp. 93- 103 ,(2014) , 10.1007/978-3-319-08389-6_9
Aditya P. Mathur, Nwokedi Idika, A Survey of Malware Detection Techniques ,(2007)
J. O. Kephart, A biologically inspired immune system for computers Artificial Life. ,(1994)
Ulrich Bayer, Christopher Kruegel, Engin Kirda, TTAnalyze: A Tool for Analyzing Malware Proceedings of the European Institute for Computer Antivirus Research Annual Conference,2006. ,(2006)
Hinrich Schütze, Christopher D. Manning, Prabhakar Raghavan, Introduction to Information Retrieval ,(2005)
Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian, Mady Marinescu, Anil Thomas, Malware classification with recurrent networks international conference on acoustics, speech, and signal processing. pp. 1916- 1920 ,(2015) , 10.1109/ICASSP.2015.7178304
Geoffrey E. Hinton, Vinod Nair, Rectified Linear Units Improve Restricted Boltzmann Machines international conference on machine learning. pp. 807- 814 ,(2010)
Joshua Saxe, Konstantin Berlin, Deep neural network based malware detection using two dimensional binary program features international conference on malicious and unwanted software. pp. 11- 20 ,(2015) , 10.1109/MALWARE.2015.7413680