Learning Manifolds in Forensic Data

作者: Frédéric Ratle , Anne-Laure Terrettaz-Zufferey , Mikhail Kanevski , Pierre Esseiva , Olivier Ribaux

DOI: 10.1007/11840930_93

关键词: IsomapPrincipal component analysisKernel principal component analysisArtificial neural networkStatisticsArtificial intelligencePattern recognitionDimensionality reductionManifoldNonlinear dimensionality reductionComputer scienceKernel method

摘要: Chemical data related to illicit cocaine seizures is analyzed using linear and nonlinear dimensionality reduction methods. The goal find relevant features that could guide the analysis process in chemical drug profiling, a recent field crime mapping community. has been collected gas chromatography analysis. Several methods are tested: PCA, kernel isomap, spatio-temporal isomap locally embedding. ST-isomap used detect potential time-dependent manifold, being sequential. Results show presence of simple manifold very likely this cannot be detected by PCA. temporal regularities also observed with ST-isomap. Kernel PCA perform better than other methods, more robust when introducing random perturbations dataset.

参考文章(16)
Olivier Ribaux, Mikhail F. Kanevski, Pierre Esseiva, Frédéric Ratle, Anne-Laure Terrettaz, Pattern analysis in illicit heroin seizures: a novel application of machine learning algorithms. the european symposium on artificial neural networks. pp. 665- 670 ,(2006)
David G. Stork, Richard O. Duda, Peter E. Hart, Pattern Classification (2nd Edition) Wiley-Interscience. ,(2000)
David G. Stork, Richard O. Duda, Peter E. Hart, Pattern Classification (2nd ed.) ,(1999)
Michael G. Madden, Alan G. Ryder, Machine learning methods for quantitative analysis of Raman spectroscopy data Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. ,vol. 4876, pp. 1130- 1139 ,(2003) , 10.1117/12.464039
P ESSEIVA, F ANGLADA, L DUJOURDY, F TARONI, P MARGOT, E PASQUIER, M DAWSON, C ROUX, P DOBLE, Chemical profiling and classification of illicit heroin by principal component analysis, calculation of inter sample correlation and artificial neural networks. Talanta. ,vol. 67, pp. 360- 367 ,(2005) , 10.1016/J.TALANTA.2005.03.041
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
Odest Chadwicke Jenkins, Maja J. Matarić, A spatio-temporal extension to Isomap nonlinear dimension reduction international conference on machine learning. pp. 56- ,(2004) , 10.1145/1015330.1015357
P Esseiva, L Dujourdy, F Anglada, F Taroni, P Margot, A methodology for illicit heroin seizures comparison in a drug intelligence perspective using large databases. Forensic Science International. ,vol. 132, pp. 139- 152 ,(2003) , 10.1016/S0379-0738(03)00010-0