Models for the Logic of Proofs

作者: Alexey Mkrtychev

DOI: 10.1007/3-540-63045-7_27

关键词: Finite setMathematicsSecond-order logicZeroth-order logicPredicate functor logicDiscrete mathematicsIntermediate logicDecidabilityMany-valued logicGödel's completeness theorem

摘要: The operational logic of proofs \(\mathcal{L}\mathcal{P}\)was introduced by S. Artemov [1] as an version 54. In this paper, we define a model for \(\mathcal{L}\mathcal{P}\)and prove the corresponding completeness theorem. Using model, decidability variant \(\mathcal{L}\mathcal{P}\)axiomatized finite set schemes.

参考文章(3)
Anil Nerode, Some Lectures on Modal Logic Logic, Algebra, and Computation. pp. 281- 334 ,(1991) , 10.1007/978-3-642-76799-9_8
Sergei Artëmov, Logic of proofs Annals of Pure and Applied Logic. ,vol. 67, pp. 29- 59 ,(1994) , 10.1016/0168-0072(94)90007-8
Franz Baader, Jörg H. Siekmann, Unification theory Handbook of logic in artificial intelligence and logic programming. pp. 41- ,(1994)