Parallel Split-Step Fourier Methods for the CMKdV Equation.

作者: Ruihua Liu , Thiab R. Taha

DOI:

关键词: SpeedupComputer scienceHomoclinic orbitDiscrete-time Fourier transformFourier transformFourier sine and cosine seriesFourier analysisMathematical analysisInverse scattering problemFinite difference

摘要: The class of complex modified Korteweg-de Vries (CMKdV) equations has many applications. One form the CMKdV equation been used to create models for nonlinear evolution plasma waves , propagation transverse in a molecular chain, and generalized elastic solid. Another traveling-wave double homoclinic orbit. In this paper we introduce sequential parallel splitstep Fourier methods numerical simulations above equation. These are implemented on Origin 2000 multiprocessor computer. Our experiments have shown that finite difference inverse scattering give accurate results considerable speedup.

参考文章(14)
K. Rasheed, B.D. Davison, Effect of global parallelism on the behavior of a steady state genetic algorithm for design optimization congress on evolutionary computation. ,vol. 1, pp. 534- 541 ,(1999) , 10.1109/CEC.1999.781979
B.M. Herbst, Mark J. Ablowitz, E. Ryan, Numerical homoclinic instabilities and the complex modified Korteweg-de Vries equation Computer Physics Communications. ,vol. 65, pp. 137- 142 ,(1991) , 10.1016/0010-4655(91)90165-H
O.B. Gorbacheva, L.A. Ostrovsky, Nonlinear vector waves in a mechanical model of a molecular chain Physica D: Nonlinear Phenomena. ,vol. 8, pp. 223- 228 ,(1983) , 10.1016/0167-2789(83)90319-6
Bengt Fornberg, Tobin A. Driscoll, A Fast Spectral Algorithm for Nonlinear Wave Equations with Linear Dispersion Journal of Computational Physics. ,vol. 155, pp. 456- 467 ,(1999) , 10.1006/JCPH.1999.6351
Thiab R. Taha, Numerical simulations of the complex modified Korteweg-de Vries equation Mathematics and Computers in Simulation. ,vol. 37, pp. 461- 467 ,(1994) , 10.1016/0378-4754(94)00031-X
William L. Briggs, Leslie B. Hart, Roland A. Sweet, Abbie O’Gallagher, Multiprocessor FFT Methods SIAM Journal on Scientific and Statistical Computing. ,vol. 8, pp. s27- s42 ,(1987) , 10.1137/0908011
V. Ruban, A. Zenchuk, S. M. Zoldi, Parallel Implementations of the Split-Step Fourier Method for Solving Nonlinear Schrodinger Systems arXiv: Computational Physics. ,(2008)