A compactness theorem for the Yamabe problem

作者: M.A. Khuri , F.C. Marques , R.M. Schoen

DOI: 10.4310/JDG/1228400630

关键词: Eigenvalues and eigenvectorsCalculusQuadratic formYamabe problemPoint (geometry)MathematicsPointwiseCompact spacePure mathematicsCompactness theorem

摘要: In this paper, we prove compactness for the full set of solutions to Yamabe Problem if $n\leq 24$. After proving sharp pointwise estimates at a blowup point, Weyl Vanishing The- orem in those dimensions, and reduce question showing positivity quadratic form. We also show that form has negative eigenvalues 25$.

参考文章(33)
J. Lohkamp, The Higher Dimensional Positive Mass Theorem II arXiv: Differential Geometry. ,(2016)
Richard M. Schoen, Shing Tung Yau, Lectures on Differential Geometry ,(1994)
Neil S. Trudinger, Remarks concerning the conformal deformation of riemannian structures on compact manifolds Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 22, pp. 265- 274 ,(1968)
Morio Obata, The conjectures on conformal transformations of Riemannian manifolds Journal of Differential Geometry. ,vol. 6, pp. 247- 258 ,(1971) , 10.4310/JDG/1214430407
Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds Osaka Mathematical Journal. ,vol. 12, pp. 21- 37 ,(1960) , 10.18910/8577
Fernando Coda Marques, A priori estimates for the Yamabe problem in the non-locally conformally flat case Journal of Differential Geometry. ,vol. 71, pp. 315- 346 ,(2005) , 10.4310/JDG/1143651772
Olivier Druet, Compactness for Yamabe metrics in low dimensions International Mathematics Research Notices. ,vol. 2004, pp. 1143- 1191 ,(2004) , 10.1155/S1073792804133278