In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy.

作者: A. Bigi , N. Nicoli-Aldini , B. Bracci , B. Zavan , E. Boanini

DOI: 10.1002/JBM.A.31132

关键词: NanotechnologyMaterials scienceChemical engineeringMesenchymal stem cellType I collagenExtracellular matrixNanocrystalline materialCell morphologyAdhesionCoatingOsteonectin

摘要: In this study we coated a new biocompatible, nanostructured titanium alloy, Ti13Nb13Zr, with thin layer of hydroxyapatite nanocrystals and investigated the response human bone-marrow-derived mesenchymal cells. The coating was realized using slightly supersaturated CaP solution, which provokes fast deposition nanocrystalline hydroxyapatite. A is appreciable on etched Ti13Nb13Zr substrates after just 1.5 h soaking in it reaches thickness 1–2 μm 3 soaking. seems thinner than that deposited Ti6Al4V, examined for comparison, likely because different roughness profiles two alloys, constituted elongated HA nanocrystals, mean length about 100 nm. Mesenchymal stem cells were seeded onto uncoated Ti alloys cultured up to 35 days. Cell morphology, proliferation differentiation evaluated. display good adhesion substrates, whereas presence reduces cell induces MSCs towards phenotypic osteoblastic lineage, agreement increase expression osteopontin, osteonectin collagen type I, evaluated by means rt-PCR. Type I higher MSC culture compared standing more efficient extracellular matrix deposition. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res,

参考文章(25)
M. Santin, A. Cigada, E. Sandrini, G. Rondelli, Roberto Chiesa, Osteointegration of titanium and its alloys by anodic spark deposition and other electrochemical techniques : a review Journal of Applied Biomaterials & Biomechanics. ,vol. 1, pp. 91- 107 ,(2003) , 10.1177/228080000300100201
F. Barrère, P. Layrolle, C.A. van Blitterswijk, K. de Groot, Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. Journal of Materials Science: Materials in Medicine. ,vol. 12, pp. 529- 534 ,(2001) , 10.1023/A:1011271713758
M. Wei, A. J. Ruys, B. K. Milthorpe, C. C. Sorrell, Solution ripening of hydroxyapatite nanoparticles: effects on electrophoretic deposition. Journal of Biomedical Materials Research. ,vol. 45, pp. 11- 19 ,(1999) , 10.1002/(SICI)1097-4636(199904)45:1<11::AID-JBM2>3.0.CO;2-7
G. He, J. Eckert, Q.L. Dai, M.L. Sui, W. Löser, M. Hagiwara, E. Ma, Nanostructured Ti-based multi-component alloys with potential for biomedical applications. Biomaterials. ,vol. 24, pp. 5115- 5120 ,(2003) , 10.1016/S0142-9612(03)00440-X
Mitsuo Niinomi, Recent metallic materials for biomedical applications Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science. ,vol. 33, pp. 477- 486 ,(2002) , 10.1007/S11661-002-0109-2
Jiyong Chen, Weidong Tong, Yang Cao, Jiaming Feng, Xingdong Zhang, Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. Journal of Biomedical Materials Research. ,vol. 34, pp. 15- 20 ,(1997) , 10.1002/(SICI)1097-4636(199701)34:1<15::AID-JBM3>3.0.CO;2-Q
Adriana Bigi, Elisa Boanini, Silvia Panzavolta, Norberto Roveri, Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate Biomacromolecules. ,vol. 1, pp. 752- 756 ,(2000) , 10.1021/BM0055854
Yuelian Liu, Pierre Layrolle, Joost de Bruijn, Clemens van Blitterswijk, Klaas de Groot, Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. Journal of Biomedical Materials Research. ,vol. 57, pp. 327- 335 ,(2001) , 10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-J
Christine Knabe, Cameron Rolfe Howlett, Falk Klar, Hala Zreiqat, The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells. Journal of Biomedical Materials Research Part A. ,vol. 71, pp. 98- 107 ,(2004) , 10.1002/JBM.A.30130