Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems

作者: H. Terashima-Marín , J. C. Ortiz-Bayliss , P. Ross , M. Valenzuela-Rendón

DOI: 10.1145/1389095.1389206

关键词: Hybrid algorithm (constraint satisfaction)Constraint satisfaction dual problemConstraint logic programmingHeuristicsMathematical optimizationConstraint satisfaction problemLocal consistencyBacktrackingConstraint graphMathematics

摘要: The idea behind hyper-heuristics is to discover some combination of straightforward heuristics solve a wide range problems. To be worthwhile, such should outperform the single heuristics. This paper presents GA-based method that produces general for dynamic variable ordering within Constraint Satisfaction Problems. GA uses variable-length representation, which evolves combinations condition-action rules producing after going through learning process includes training and testing phases. Such hyper-heuristics, when tested with large set benchmark problems, produce encouraging results most cases. testebed composed problems randomly generated using an algorithm proposed by Prosser.

参考文章(26)
Robert A Wilson, FG Keil, Manfred Fahle, The MIT encyclopedia of the cognitive sciences MIT Press. ,(1999)
Wolfgang Banzhaf, Robert E. Keller, Peter Nordin, Genetic Programming: An Introduction ,(1997)
Bradley Korb, David E. Goldberg, Kalyanmoy Deb, Messy genetic algorithms: motivation, analysis, and first results Complex Systems. ,vol. 3, ,(1989)
Elena Marchiori, Adri Steenbeek, A genetic local search algorithm for random binary constraint satisfaction problems acm symposium on applied computing. pp. 458- 462 ,(2000) , 10.1145/335603.335910
H. Terashima-Marín, C. J. Farías Zárate, P. Ross, M. Valenzuela-Rendón, A GA-based method to produce generalized hyper-heuristics for the 2D-regular cutting stock problem Proceedings of the 8th annual conference on Genetic and evolutionary computation - GECCO '06. pp. 591- 598 ,(2006) , 10.1145/1143997.1144102
Rina Dechter, Itay Meiri, Experimental evaluation of preprocessing algorithms for constraint satisfaction problems Artificial Intelligence. ,vol. 68, pp. 211- 241 ,(1994) , 10.1016/0004-3702(94)90068-X
Robert M. Haralick, Gordon L. Elliott, Increasing tree search efficiency for constraint satisfaction problems Artificial Intelligence. ,vol. 14, pp. 263- 313 ,(1980) , 10.1016/0004-3702(80)90051-X
Wolfgang Banzhaf, Robert E. Keller, Peter Nordin, Frank D. Francone, Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications ,(1998)