Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions

作者: Wilhelm Schlag , Yuval Peres

DOI: 10.1215/S0012-7094-00-10222-0

关键词: CombinatoricsCorrelation dimensionImage (category theory)MathematicsAbsolute continuityCantor setBorel setCompact spaceHausdorff dimensionLebesgue measureDiscrete mathematicsGeneral Mathematics

摘要: Erdős (1939, 1940) studied the distribution νλ of random series P∞ 0 ±λn, and showed that is singular for infinitely many λ ∈ (1/2, 1), absolutely continuous a.e. in a small interval (1 − δ, 1). Solomyak (1995) proved conjecture made by Garsia (1962) In order to sharpen this result, we have developed general method can be used estimate Hausdorff dimension exceptional parameters several contexts. particular, prove: • For any λ0 > 1/2, set [λ0, 1) such has strictly less than 1. Borel A ⊂ Rd with dim (d + 1)/2, there are points x pinned distance {|x− y| : y A} positive Lebesgue measure. Moreover, where fails at most d 1− A. Let Kλ denote middle-α Cantor α = 1 2λ let K R compact set. Peres (1998) (λ0, 1/2) dimKλ 1, sum length; show statement 2− dimKλ0 . E 2, almost all orthogonal projections onto lines through origin nonempty interior, E. If μ probability measure on correlation greater m 2γ, then “prevalent” C1 maps f → Rm (in sense described Hunt, Sauer Yorke (1992)), image under density least γ fractional derivatives L2(Rm).

参考文章(42)
Michael Frazier, Björn Jawerth, Guido Weiss, Littlewood-Paley Theory and the Study of Function Spaces CBMS Regional Conference Series in Mathematics. ,vol. 79, ,(1991) , 10.1090/CBMS/079
Thomas Wolff, Decay of circular means of Fourier transforms of measures International Mathematics Research Notices. ,vol. 1999, pp. 547- 567 ,(1999) , 10.1155/S1073792899000288
Yuval Peres, Wilhelm Schlag, Boris Solomyak, Sixty Years of Bernoulli Convolutions Fractal Geometry and Stochastics II. pp. 39- 65 ,(2000) , 10.1007/978-3-0348-8380-1_2
F. Przytycki, M. Urbański, On the Hausdorff dimension of some fractal sets Studia Mathematica. ,vol. 93, pp. 155- 186 ,(1989) , 10.4064/SM-93-2-155-186
Yuval Peres, Boris Solomyak, Self-similar measures and intersections of Cantor sets Transactions of the American Mathematical Society. ,vol. 350, pp. 4065- 4087 ,(1998) , 10.1090/S0002-9947-98-02292-2
Børge Jessen, Aurel Wintner, Distribution functions and the Riemann zeta function Transactions of the American Mathematical Society. ,vol. 38, pp. 48- 88 ,(1935) , 10.1090/S0002-9947-1935-1501802-5
TIMOTHY D. SAUER, JAMES A. YORKE, Are the dimensions of a set and its image equal under typical smooth functions Ergodic Theory and Dynamical Systems. ,vol. 17, pp. 941- 956 ,(1997) , 10.1017/S0143385797086252
Thomas Wolff, A Kakeya-type problem for circles American Journal of Mathematics. ,vol. 119, pp. 985- 1026 ,(1997) , 10.1353/AJM.1997.0034
Brian R. Hunt, Timothy Sauer, James A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces Bulletin of the American Mathematical Society. ,vol. 27, pp. 217- 238 ,(1992) , 10.1090/S0273-0979-1992-00328-2