Analysis and Detection of Malware in Android Applications Using Machine Learning

作者: Umme Sumaya Jannat , Syed Md. Hasnayeen , Mirza Kamrul Bashar Shuhan , Md. Sadek Ferdous

DOI: 10.1109/ECACE.2019.8679493

关键词: Machine learningAndroid (operating system)Mobile phoneFeature extractionStatic analysisComputer scienceArtificial intelligenceMalware

摘要: The Android Operating System, being the leading OS for mobile phone devices, is also primary target malicious attackers. Applications installed in present a way attackers to breach security of system. Therefore, it essential study and analyze applications so that can be properly identified. Static dynamic analyses are two major methods by which analyzed segregate from benign ones. This paper presents several leveraging machine learning models. Taking different features applying various classifiers, we show analysis model hit up 93% accuracy detecting malware whereas static achieve 81% accuracy. Moreover, trending Bangladeshi as part this resulting into acquisition interesting insights.

参考文章(15)
Akanksha Sharma, Subrat Kumar Dash, Mining API Calls and Permissions for Android Malware Detection cryptology and network security. pp. 191- 205 ,(2014) , 10.1007/978-3-319-12280-9_13
Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, Gonzalo Álvarez, PUMA: Permission Usage to Detect Malware in Android CISIS/ICEUTE/SOCO Special Sessions. pp. 289- 298 ,(2013) , 10.1007/978-3-642-33018-6_30
Yong Qiao, Yuexiang Yang, Jie He, Chuan Tang, Zhixue Liu, CBM: Free, Automatic Malware Analysis Framework Using API Call Sequences Advances in Intelligent Systems and Computing. pp. 225- 236 ,(2014) , 10.1007/978-3-642-37832-4_21
William Enck, Patrick McDaniel, Jaeyeon Jung, Byung-Gon Chun, Peter Gilbert, Anmol N. Sheth, Landon P. Cox, TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones operating systems design and implementation. pp. 393- 407 ,(2010) , 10.5555/1924943.1924971
Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, Kuo-Ping Wu, DroidMat: Android Malware Detection through Manifest and API Calls Tracing information security. pp. 62- 69 ,(2012) , 10.1109/ASIAJCIS.2012.18
Xing Liu, Jiqiang Liu, A Two-Layered Permission-Based Android Malware Detection Scheme mobile cloud computing & services. pp. 142- 148 ,(2014) , 10.1109/MOBILECLOUD.2014.22
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)
Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, David Wagner, Android permissions demystified Proceedings of the 18th ACM conference on Computer and communications security - CCS '11. pp. 627- 638 ,(2011) , 10.1145/2046707.2046779
Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, CERT Siemens, DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket. network and distributed system security symposium. ,(2014) , 10.14722/NDSS.2014.23247
Jehyun Lee, Suyeon Lee, Heejo Lee, Screening smartphone applications using malware family signatures Computers & Security. ,vol. 52, pp. 234- 249 ,(2015) , 10.1016/J.COSE.2015.02.003