Facilitation of mobile device geolocation

作者: Jeremy Fix , Rudolph Mappus , Ravishankar Doejode , James Morgan White

DOI:

关键词: Mobile deviceGeolocationKernel density estimationWirelessGeographyPoint (geometry)InferenceGrouped dataGeographic coordinate systemData mining

摘要: More efficient mobile device location data can be obtained by estimating a most likely point in coverage pattern using kernel density estimation technique. The technique provide continuous estimate of the frequented locations device(s) within area. For each wireless sector, collected grouped to closest geographic coordinate system, and an inference made based on data.

参考文章(70)
Nicolas Lachance-Bernard, Timothée Produit, Biba Tominc, Matej Nikšič, Barbara Goličnik Marušić, None, Network based kernel density estimation for cycling facilities optimal location applied to Ljubljana international conference on computational science and its applications. ,vol. 6783, pp. 136- 150 ,(2011) , 10.1007/978-3-642-21887-3_11
Martin Klepal, Widyawan, Dirk Pesch, location and tracking system ,(2010)
Prakash Muttineni, Mauricio Mediano, Srihari Venkatesan, Chi-Chao Chang, Dipanshu Sharma, Method and apparatus for probabilistic user location ,(2013)
Russell Scott Thornton, Method And System For Managing Device Data ,(2013)
Christian E. Loza, Thomas J. Eunice, Janki Y. Vora, Mathews Thomas, Arvind Sathi, Mobile device analytics ,(2013)
Russell G. Sanders, Arik S. Mimran, Alecsander P. Eitan, Geographical boundary based tracking ,(2013)
Zarko Draganic, Peter Barrett, Geographical location aggregation from multiple sources ,(2012)