On Q-factorial terminalizations of nilpotent orbits

作者: Baohua Fu

DOI: 10.1016/J.MATPUR.2009.08.010

关键词: ConjecturePure mathematicsBirational geometryMathematicsNilpotentFactorialAlgebraLie algebraNilpotent orbitNilpotent groupSimple (abstract algebra)

摘要: Abstract In a recent preprint, Y. Namikawa proposed conjecture on Q -factorial terminalizations of nilpotent orbit closures and he proved his for classical simple Lie algebras. this paper, we prove exceptional For the birational geometry, contrary to case, two new types Mukai flops appear. We also give classifications in algebras whose normalization has only or terminal singularities.

参考文章(24)
Hanspeter Kraft, Claudio Procesi, Minimal singularities in GL n Inventiones Mathematicae. ,vol. 62, pp. 503- 515 ,(1980) , 10.1007/BF01394257
William M. McGovern, The Adjoint Representation and the Adjoint Action Springer, Berlin, Heidelberg. pp. 159- 238 ,(2002) , 10.1007/978-3-662-05071-2_3
William M. McGovern, James B. Carrell, Andrzej Białynicki-Birula, Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action ,(2002)
Dean Alvis, Induce/restrict matrices for exceptional Weyl groups arXiv: Representation Theory. ,(2005)
D. I. Panyushev, Rationality of singularities and the Gorenstein property for nilpotent orbits Functional Analysis and Its Applications. ,vol. 25, pp. 225- 226 ,(1991) , 10.1007/BF01085494
Hanspeter Kraft, Closures of conjugacy classes in g2 Journal of Algebra. ,vol. 126, pp. 454- 465 ,(1989) , 10.1016/0021-8693(89)90313-X
Yoshinori Namikawa, Flops and Poisson Deformations of Symplectic Varieties Publications of the Research Institute for Mathematical Sciences. ,vol. 44, pp. 259- 314 ,(2008) , 10.2977/PRIMS/1210167328
G. Lusztig, N. Spaltenstein, Induced Unipotent Classes Journal of the London Mathematical Society. ,vol. s2-19, pp. 41- 52 ,(1979) , 10.1112/JLMS/S2-19.1.41