On Deep Learning based algorithms for Detection of Diabetic Retinopathy

作者: Haneesha Thanati , Renoh Johnson Chalakkal , Waleed H. Abdulla

DOI: 10.23919/ELINFOCOM.2019.8706431

关键词: Convolutional neural networkObject detectionDeep learningEarly detectionFuture trendArtificial neural networkRetinopathyArtificial intelligenceDiabetic retinopathyMachine learningComputer science

摘要: Diabetic retinopathy (DR) is one of the leading causes avertible blindness worldwide. Early detection disease can help to save vision diabetic patients. Presence exudates, hemorrhages, and microaneurysms indicate an unhealthy eye image. Deep learning models have triumphed in image recognition, object biomedical signal classification. Convolution neural network based DR techniques are fast evolving identify complex features thus accurately classify even severe cases. The presented paper investigates recent work done using deep collating milestones achieved guide researchers working this domain future trend.

参考文章(34)
Wynne Hsu, Mong Li Lee, Gilbert Lim, Tien Yin Wong, Transformed Representations for Convolutional Neural Networks in Diabetic Retinopathy Screening national conference on artificial intelligence. ,(2014)
Wynne Hsu, Mong Li Lee, Gilbert Lim Yong San, Constrained-MSER detection of retinal pathology international conference on pattern recognition. pp. 2059- 2062 ,(2012)
Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition computer vision and pattern recognition. ,(2014)
Etienne Decencière, Xiwei Zhang, Guy Cazuguel, Bruno Lay, Béatrice Cochener, Caroline Trone, Philippe Gain, Richard Ordonez, Pascale Massin, Ali Erginay, Béatrice Charton, Jean-Claude Klein, FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE Image Analysis & Stereology. ,vol. 33, pp. 231- 234 ,(2014) , 10.5566/IAS.1155
E. Decencière, G. Cazuguel, X. Zhang, G. Thibault, J.-C. Klein, F. Meyer, B. Marcotegui, G. Quellec, M. Lamard, R. Danno, D. Elie, P. Massin, Z. Viktor, A. Erginay, B. Laÿ, A. Chabouis, TeleOphta: Machine learning and image processing methods for teleophthalmology Irbm. ,vol. 34, pp. 196- 203 ,(2013) , 10.1016/J.IRBM.2013.01.010
G G Gardner, D Keating, T H Williamson, A T Elliott, Automatic detection of diabetic retinopathy using an artificial neural network : a screening tool British Journal of Ophthalmology. ,vol. 80, pp. 940- 944 ,(1996) , 10.1136/BJO.80.11.940
Jagadish Nayak, P Subbanna Bhat, Rajendra Acharya U, Choo M Lim, Manjunath Kagathi, Automated Identification of Diabetic Retinopathy Stages Using Digital Fundus Images Journal of Medical Systems. ,vol. 32, pp. 107- 115 ,(2008) , 10.1007/S10916-007-9113-9
Michael D. Abramoff, Maria S.A. Suttorp-Schulten, Web-based screening for diabetic retinopathy in a primary care population: the EyeCheck project. Telemedicine Journal and E-health. ,vol. 11, pp. 668- 674 ,(2005) , 10.1089/TMJ.2005.11.668
Ilya Sutskever, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Nitish Srivastava, Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research. ,vol. 15, pp. 1929- 1958 ,(2014)