The Intermediate Phase and Self-organization in Network Glasses

作者: M.F. Thorpe , M.V. Chubynsky

DOI: 10.1007/0-306-47113-2_4

关键词: Condensed matter physicsRigidity (psychology)Phase (matter)Self-organizationPivot jointCritical exponentMaterials science

摘要: We have discussed the rigidity of random and self-organized networks. find that there is a single transition from floppy to rigid in networks, but an intermediate phase intervenes This contains no redundant bonds so stress-free.

参考文章(53)
Donald J. Jacobs, Leslie A. Kuhn, Michael F. Thorpe, Flexible and Rigid Regions in Proteins Springer, Boston, MA. pp. 357- 384 ,(2002) , 10.1007/0-306-47089-6_20
M.F. Thorpe, D.J. Jacobs, N.V. Chubynsky, A.J. Rader, GENERIC RIGIDITY OF NETWORK GLASSES Springer, Boston, MA. pp. 239- 277 ,(2002) , 10.1007/0-306-47089-6_14
Rigidity theory and applications Kluwer Academic/Plenum. ,(2002) , 10.1007/B115749
C.M. Fortuin, P.W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models Physica D: Nonlinear Phenomena. ,vol. 57, pp. 536- 564 ,(1972) , 10.1016/0031-8914(72)90045-6
D. J. Frank, C. J. Lobb, Highly efficient algorithm for percolative transport studies in two dimensions Physical Review B. ,vol. 37, pp. 302- 307 ,(1988) , 10.1103/PHYSREVB.37.302
C. Moukarzel, P. M. Duxbury, Stressed backbone and elasticity of random central-force systems. Physical Review Letters. ,vol. 75, pp. 4055- 4058 ,(1995) , 10.1103/PHYSREVLETT.75.4055
B. R. Djordjević, M. F. Thorpe, F. Wooten, Computer model of tetrahedral amorphous diamond. Physical Review B. ,vol. 52, pp. 5685- 5689 ,(1995) , 10.1103/PHYSREVB.52.5685
Bruce Hendrickson, Conditions for unique graph realizations SIAM Journal on Computing. ,vol. 21, pp. 65- 84 ,(1992) , 10.1137/0221008
Y. Cai, M. F. Thorpe, Floppy modes in network glasses. Physical Review B. ,vol. 40, pp. 10535- 10542 ,(1989) , 10.1103/PHYSREVB.40.10535