Retinal image analysis based on mixture models to detect hard exudates.

作者: Clara I. Sánchez , María García , Agustín Mayo , María I. López , Roberto Hornero

DOI: 10.1016/J.MEDIA.2009.05.005

关键词: Mixture modelRetinalComputer visionArtificial intelligenceHard exudatesThresholdingCotton wool spotsRetinopathyDiabetic retinopathyEdge detectionMedicine

摘要: Diabetic Retinopathy is one of the leading causes blindness in developed countries. Hard exudates have been found to be most prevalent earliest clinical signs retinopathy. Thus, automatic detection hard from retinal images clinically significant. In this study, an method detect proposed. The algorithm based on mixture models dynamically threshold order separate background. A postprocessing technique, edge detection, applied distinguish cotton wool spots and other artefacts. We prospectively assessed performance using a database 80 with variable colour, brightness, quality. obtained sensitivity 90.2% positive predictive value 96.8% lesion-based criterion. image-based classification accuracy also evaluated obtaining 100% specificity 90%.

参考文章(25)
Nicholas P. Ward, Stephen Tomliivson, Christopher J. Taylor, Image Analysis of Fundus Photographs Ophthalmology. ,vol. 96, pp. 80- 86 ,(1989) , 10.1016/S0161-6420(89)32925-3
D. Kavitha, S.S. Devi, Automatic detection of optic disc and exudates in retinal images international conference on intelligent sensing and information processing. pp. 501- 506 ,(2005) , 10.1109/ICISIP.2005.1529506
Aljaž Noe, James C. Gee, Partial Volume Segmentation of Cerebral MRI Scans with Mixture Model Clustering information processing in medical imaging. pp. 423- 430 ,(2001) , 10.1007/3-540-45729-1_44
Pierre Soille, Morphological Image Analysis: Principles and Applications Published in <b>2003</b> in Berlin etc] by Springer. ,(2003)
K.J. Cios, From the guest editor medical data mining and knowledge discovery IEEE Engineering in Medicine and Biology Magazine. ,vol. 19, pp. 15- 16 ,(2000) , 10.1109/MEMB.2000.853477
G G Gardner, D Keating, T H Williamson, A T Elliott, Automatic detection of diabetic retinopathy using an artificial neural network : a screening tool British Journal of Ophthalmology. ,vol. 80, pp. 940- 944 ,(1996) , 10.1136/BJO.80.11.940
Marco Foracchia, Enrico Grisan, Alfredo Ruggeri, Luminosity and contrast normalization in retinal images. Medical Image Analysis. ,vol. 9, pp. 179- 190 ,(2005) , 10.1016/J.MEDIA.2004.07.001
Russell Phillips, John Forrester, Peter Sharp, Automated detection and quantification of retinal exudates. Graefes Archive for Clinical and Experimental Ophthalmology. ,vol. 231, pp. 90- 94 ,(1993) , 10.1007/BF00920219
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Zheng Liu, C. Opas, S.M. Krishnan, Automatic image analysis of fundus photograph international conference of the ieee engineering in medicine and biology society. ,vol. 2, pp. 524- 525 ,(1997) , 10.1109/IEMBS.1997.757661