A parallel approach to evidence combination on qualitative Markov trees

作者: X. Hong , W. Liu , K. Adamson

DOI: 10.1109/PDCAT.2003.1236357

关键词: Tree (data structure)Theoretical computer scienceBinary treeComputational resourceParallel algorithmMarkov processMarkov chainComputer scienceFair computational tree logicDecision tree model

摘要: Dempster's rule of evidence combination is computational expensive. We present a parallel approach to on qualitative Markov tree. Binarization algorithm transforms tree into binary based the workload in nodes for an exact implementation combination. A then partitioned clusters with each cluster being assigned processor environment. The improves efficiency

参考文章(17)
Didier Dubois, Henri Prade, Inference in possibilistic hypergraphs Uncertainty in Knowledge Bases. pp. 249- 259 ,(1990) , 10.1007/BFB0028110
Nic Wilson, A Monte-Carlo algorithm for Dempster-Shafer belief uncertainty in artificial intelligence. pp. 414- 417 ,(1991) , 10.1016/B978-1-55860-203-8.50058-9
Jeffrey A. Barnett, Computational Methods for A Mathematical Theory of Evidence Classic Works of the Dempster-Shafer Theory of Belief Functions. pp. 197- 216 ,(1981) , 10.1007/978-3-540-44792-4_8
Weiru Liu, Xin Hong, Kenny Adamson, Computational-workload based binarization and partition of qualitative Markov trees for belief combination. european conference on symbolic and quantitative approaches to reasoning and uncertainty. pp. 306- 318 ,(2003) , 10.1007/978-3-540-45062-7_25
Prakash P. Shenoy, Binary Join Trees for Computing Marginals in the Shenoy-Shafer Architecture International Journal of Approximate Reasoning. ,vol. 17, pp. 239- 263 ,(1997) , 10.1016/S0888-613X(97)89135-9
Glenn Shafer, Prakash P. Shenoy, Khaled Mellouli, Propagating belief functions in qualitative Markov trees International Journal of Approximate Reasoning. ,vol. 1, pp. 349- 400 ,(1987) , 10.1016/0888-613X(87)90024-7
Piyush Maheshwari, Hong Shen, An efficient clustering algorithm for partitioning parallel programs parallel computing. ,vol. 24, pp. 893- 909 ,(1998) , 10.1016/S0167-8191(98)00004-0
Bj∅rnar Tessem, Approximations for efficient computation in the theory of evidence Artificial Intelligence. ,vol. 61, pp. 315- 329 ,(1993) , 10.1016/0004-3702(93)90072-J
Prakash P. Shenoy, Glenn Shafer, Propagating Belief Functions with Local Computations IEEE Intelligent Systems. ,vol. 1, pp. 43- 52 ,(1986) , 10.1109/MEX.1986.4306979
Glenn Shafer, Roger Logan, Implementing Dempster's rule for hierarchial evidence Artificial Intelligence. ,vol. 33, pp. 271- 298 ,(1987) , 10.1016/0004-3702(87)90040-3