Cole‐Hopf Transformations for Higher Dimensional Burgers Equations With Variable Coefficients

作者: B. Mayil Vaganan

DOI: 10.1111/J.1467-9590.2012.00551.X

关键词: Variable (mathematics)MathematicsSpecial caseBurgers' equationZero (complex analysis)Mathematical analysisTransformation (function)Function (mathematics)

摘要: Cole-Hopf transformations for two and three dimensional Burgers equations with variable coefficients are reported. Like in the derivation of transformation, while changing equation to its potential form, if we set function integration equal zero, then only a specific form transformation (CHT-1) is obtained. If dispense this procedure take into consideration more general it includes CHT-1 as special case. systems which consists two-dimensional or version also derived. Further, CHT three-dimensional stated without proof.

参考文章(20)
J.M. Burgers, A mathematical model illustrating the theory of turbulence Advances in Applied Mechanics. ,vol. 1, pp. 171- 199 ,(1948) , 10.1016/S0065-2156(08)70100-5
B. Mayil Vaganan, T. Jeyalakshmi, Generalized Burgers Equations Transformable to the Burgers Equation Studies in Applied Mathematics. ,vol. 127, pp. 211- 220 ,(2011) , 10.1111/J.1467-9590.2010.00515.X
B. Mayil Vaganan, M. Senthil Kumaran, Exact Linearization and Invariant Solutions of the Generalized Burgers Equation with Linear Damping and Variable Viscosity Studies in Applied Mathematics. ,vol. 117, pp. 95- 108 ,(2006) , 10.1111/J.1467-9590.2006.00348.X
P. L. Sachdev, A generalised cole-hopf transformation for nonlinear parabolic and hyperbolic equations Zeitschrift für Angewandte Mathematik und Physik. ,vol. 29, pp. 963- 970 ,(1978) , 10.1007/BF01590817
George W. Bluman, On Mapping Linear Partial Differential Equations to Constant Coefficient Equations Siam Journal on Applied Mathematics. ,vol. 43, pp. 1259- 1273 ,(1983) , 10.1137/0143084
M.L. Gandarias, Type-II hidden symmetries through weak symmetries for nonlinear partial differential equations Journal of Mathematical Analysis and Applications. ,vol. 348, pp. 752- 759 ,(2008) , 10.1016/J.JMAA.2008.07.067
B. Mayil Vaganan, M. Senthil Kumaran, Kummer function solutions of damped Burgers equations with time-dependent viscosity by exact linearization Nonlinear Analysis: Real World Applications. ,vol. 9, pp. 2222- 2233 ,(2008) , 10.1016/J.NONRWA.2007.08.001
J. DOYLE, M. J. ENGLEFIELD, Similarity Solutions of a Generalized Burgers Equation Ima Journal of Applied Mathematics. ,vol. 44, pp. 145- 153 ,(1990) , 10.1093/IMAMAT/44.2.145
L. A. Richards, CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS Physics. ,vol. 1, pp. 318- 333 ,(1931) , 10.1063/1.1745010
M. P. Edwards, P. Broadbridge, Exceptional symmetry reductions of Burgers' equation in two and three spatial dimensions Zeitschrift für Angewandte Mathematik und Physik. ,vol. 46, pp. 595- 622 ,(1995) , 10.1007/BF00917446