作者: Bartosz Protas
DOI: 10.1007/978-3-211-99346-0_11
关键词: Context (language use) 、 Optimal control 、 Nonlinear system 、 Descent (mathematics) 、 Banach space 、 Gradient descent 、 Descent direction 、 Computer science 、 Applied mathematics 、 Nonlinear programming
摘要: This note discusses certain aspects of computational solution optimal control problems for fluid systems. We focus on approaches in which the steepest descent direction cost functional is determined using adjoint equations. In first part we review classical formulation by presenting it context Nonlinear Programming. second show some new results concerning determination directions general Banach spaces without Hilbert structure. The proposed approach illustrated with examples a state estimation problem 1D Kuramoto-Sivashinsky equation.