Nonlinear Preconditioning in Problems of Optimal Control for Fluid Systems

作者: Bartosz Protas

DOI: 10.1007/978-3-211-99346-0_11

关键词: Context (language use)Optimal controlNonlinear systemDescent (mathematics)Banach spaceGradient descentDescent directionComputer scienceApplied mathematicsNonlinear programming

摘要: This note discusses certain aspects of computational solution optimal control problems for fluid systems. We focus on approaches in which the steepest descent direction cost functional is determined using adjoint equations. In first part we review classical formulation by presenting it context Nonlinear Programming. second show some new results concerning determination directions general Banach spaces without Hilbert structure. The proposed approach illustrated with examples a state estimation problem 1D Kuramoto-Sivashinsky equation.

参考文章(16)
John William Neuberger, Sobolev gradients and differential equations ,(1997)
Robert M Lewis, A nonlinear programming perspective on sensitivity calculations for systems governed by state equations Institute for Computer Applications in Science and Engineering (ICASE). ,(1997)
Bijan Mohammadi, Olivier Pironneau, Applied Shape Optimization for Fluids ,(2001)
B. Protas, A. Styczek, Optimal rotary control of the cylinder wake in the laminar regime Physics of Fluids. ,vol. 14, pp. 2073- 2087 ,(2002) , 10.1063/1.1476671
Hitoshi Ishii, Paola Loreti, Limits of Solutions ofp-Laplace Equations aspGoes to Infinity and Related Variational Problems SIAM Journal on Mathematical Analysis. ,vol. 37, pp. 411- 437 ,(2005) , 10.1137/S0036141004432827
THOMAS R. BEWLEY, PARVIZ MOIN, ROGER TEMAM, DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms Journal of Fluid Mechanics. ,vol. 447, pp. 179- 225 ,(2001) , 10.1017/S0022112001005821
Bartosz Protas, Adjoint-based optimization of PDE systems with alternative gradients Journal of Computational Physics. ,vol. 227, pp. 6490- 6510 ,(2008) , 10.1016/J.JCP.2008.03.013
Thomas R. Bewley, Bartosz Protas, Skin friction and pressure: the “footprints” of turbulence Physica D: Nonlinear Phenomena. ,vol. 196, pp. 28- 44 ,(2004) , 10.1016/J.PHYSD.2004.02.008