Adaptive Data Embedding Framework for Multiclass Classification

作者: Tingting Mu , Jianmin Jiang , Yan Wang , J. Y. Goulermas

DOI: 10.1109/TNNLS.2012.2200693

关键词: Estimation theorySystem identificationMulticlass classificationMathematicsArtificial intelligencePattern recognitionRelation (database)ComputationEmbeddingModular designData pre-processing

摘要: The objective of this paper is the design an engine for automatic generation supervised manifold embedding models. It proposes a modular and adaptive data framework classification, referred to as DEFC, which realizes in different stages including initial preprocessing, relation feature computation. For computation embeddings, concepts friend closeness enemy dispersion are introduced, better control at local level relative positions intraclass interclass samples. These shown be general cases global information setup utilized Fisher criterion, employed construction optimization templates drive DEFC model generation. identification, we use simple but effective bilevel evolutionary optimization, searches optimal its best parameters. effectiveness demonstrated with experiments using noisy synthetic datasets possessing nonlinear distributions real-world from application fields.

参考文章(47)
Rodolphe Jenatton, Julien Mairal, Guillaume R. Obozinski, Francis R. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning international conference on machine learning. pp. 487- 494 ,(2010)
Wei Zhang, Xiangyang Xue, Zichen Sun, Yue-Fei Guo, Hong Lu, Optimal dimensionality of metric space for classification international conference on machine learning. pp. 1135- 1142 ,(2007) , 10.1145/1273496.1273639
E. Kokiopoulou, J. Chen, Y. Saad, Trace optimization and eigenproblems in dimension reduction methods Numerical Linear Algebra With Applications. ,vol. 18, pp. 565- 602 ,(2011) , 10.1002/NLA.743
Chenping Hou, Changshui Zhang, Yi Wu, Yuanyuan Jiao, Stable local dimensionality reduction approaches Pattern Recognition. ,vol. 42, pp. 2054- 2066 ,(2009) , 10.1016/J.PATCOG.2008.12.009
Paolo Piro, Richard Nock, Frank Nielsen, Michel Barlaud, Leveraging k-NN for generic classification boosting Neurocomputing. ,vol. 80, pp. 3- 9 ,(2012) , 10.1016/J.NEUCOM.2011.07.026
Warren S. Torgerson, Multidimensional scaling: I. Theory and method Psychometrika. ,vol. 17, pp. 401- 419 ,(1952) , 10.1007/BF02288916
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
R. A. FISHER, THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS Annals of Human Genetics. ,vol. 7, pp. 179- 188 ,(1936) , 10.1111/J.1469-1809.1936.TB02137.X
W.K. Wong, H.T. Zhao, Supervised optimal locality preserving projection Pattern Recognition. ,vol. 45, pp. 186- 197 ,(2012) , 10.1016/J.PATCOG.2011.05.014
Quan-Xue Gao, Hui Xu, Yi-Ying Li, De-Yan Xie, Two-dimensional supervised local similarity and diversity projection Pattern Recognition. ,vol. 43, pp. 3359- 3363 ,(2010) , 10.1016/J.PATCOG.2010.05.017