A Bayesian peaks-over-threshold analysis of floods in the Itajaí-açu River under stationarity and nonstationarity

作者: Artur Tiago Silva , Maria Manuela Portela , Mauro Naghettini , Wilson Fernandes

DOI: 10.1007/S00477-015-1184-4

关键词: EconometricsQuantileStatisticsMarkov chain Monte CarloBayesian inferenceBayes factorBayesian hierarchical modelingMathematicsGeneralized extreme value distributionPosterior probabilityBayesian linear regressionEnvironmental engineeringGeneral Environmental ScienceSafety, Risk, Reliability and QualityWater Science and TechnologyEnvironmental chemistry

摘要: In this paper we revisit the case study of Silva et al. (Stoch Env Res Risk A. doi:10.1007/s00477-015-1072-y, 2015), Itajai-acu River at Apiuna (Southern Brazil), with an augmented data set and Bayesian inferential techniques. Nonstationary Poisson-GP models are used to joint influence El Nino-Southern Oscillation (ENSO) upstream flood control structures on regime site. The Nino3.4 DJF index a dimensionless reservoir as covariates. Prior belief about GP shape parameter is elicited by fitting GEV distribution AMS samples from 138 sites in Southern Brazil 40 or more years deriving estimates that parameter. Following data-driven exploratory analysis, Markov chain Monte Carlo (MCMC) procedure sample posterior parameters. Model evaluation selection Bayes factors two information criteria. Results show evidence that, while dams play significant, though small, role reducing hazard, climate covariate stronger, increase ENSO amplitude last decades has led occurrence higher annual maximum floods. MCMC derive predictive quantiles design life levels. Uncertainty analyses based parameters presented.

参考文章(71)
NAA Rayner, De E Parker, EB Horton, Chris K Folland, Lisa V Alexander, DP Rowell, Elizabeth C Kent, A Kaplan, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century Journal of Geophysical Research. ,vol. 108, pp. 4407- ,(2003) , 10.1029/2002JD002670
Maria J Machado, Blanca A Botero, J López, Félix Francés, Andres Díez-Herrero, Gerardo Benito, None, Flood frequency analysis of historical flood data under stationary and non-stationary modelling Hydrology and Earth System Sciences. ,vol. 19, pp. 2561- 2576 ,(2015) , 10.5194/HESS-19-2561-2015
Edward L. Boone, Jason R.W. Merrick, Matthew J. Krachey, A Hellinger distance approach to MCMC diagnostics Journal of Statistical Computation and Simulation. ,vol. 84, pp. 833- 849 ,(2014) , 10.1080/00949655.2012.729588
Jan C. Neddermeyer, Computationally Efficient Nonparametric Importance Sampling Journal of the American Statistical Association. ,vol. 104, pp. 788- 802 ,(2009) , 10.1198/JASA.2009.0122
Francesco Serinaldi, Chris G. Kilsby, Stationarity is undead: Uncertainty dominates the distribution of extremes Advances in Water Resources. ,vol. 77, pp. 17- 36 ,(2015) , 10.1016/J.ADVWATRES.2014.12.013
A. A. Balkema, L. de Haan, Residual Life Time at Great Age Annals of Probability. ,vol. 2, pp. 792- 804 ,(1974) , 10.1214/AOP/1176996548
Eric F. Wood, Ignacio Rodríguez-Iturbe, Bayesian inference and decision making for extreme hydrologic events Water Resources Research. ,vol. 11, pp. 533- 542 ,(1975) , 10.1029/WR011I004P00533
Guillermo J. Vicens, Ignacio Rodriguez-Iturbe, John C. Schaake, A Bayesian framework for the use of regional information in hydrology Water Resources Research. ,vol. 11, pp. 405- 414 ,(1975) , 10.1029/WR011I003P00405
Wilson Fernandes, Mauro Naghettini, Rosângela Loschi, None, A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions Stochastic Environmental Research and Risk Assessment. ,vol. 24, pp. 1127- 1143 ,(2010) , 10.1007/S00477-010-0365-4
Stuart G. Coles, Elwyn A. Powell, Bayesian methods in extreme value modelling: a review and new developments. International Statistical Review. ,vol. 64, pp. 119- 136 ,(1996) , 10.2307/1403426