On the Quasistability Radius for a Multicriteria Integer Linear Programming Problem of Finding Extremum Solutions

作者: V. Emelichev , Yu. Nikulin

DOI: 10.1007/S10559-019-00205-9

关键词: Norm (mathematics)Applied mathematicsChebyshev filterInteger programmingMaxima and minimaCorollaryMathematics

摘要: We consider a multicriteria integer linear programming problem with targeting set of optimal solutions given by the all individual criterion minimizers (extrema). In this study, lower and upper attainable bounds on quasistability radius extremum are obtained when solution spaces endowed different Holder’s norms. As corollary, an analytical formula for is case space Chebyshev’s norm. Some computational challenges also discussed.

参考文章(31)
Andrej Nikolaevich Kolmogorov, S Fomin, Elements of the Theory of Functions and Functional Analysis ,(1961)
S. Smale, Global analysis and economics V: Pareto theory with constraints Journal of Mathematical Economics. ,vol. 1, pp. 213- 221 ,(1974) , 10.1016/0304-4068(74)90013-5
V. A. Emelichev, K. G. Kuz’min, On a type of stability of a multicriteria integer linear programming problem in the case of a monotone norm Journal of Computer and Systems Sciences International. ,vol. 46, pp. 714- 720 ,(2007) , 10.1134/S1064230707050048
T. T. Lebedeva, N. V. Semenova, T. I. Sergienko, Qualitative Characteristics of the Stability Vector Discrete Optimization Problems with Different Optimality Principles Cybernetics and Systems Analysis. ,vol. 50, pp. 228- 233 ,(2014) , 10.1007/S10559-014-9609-5
Vladimir A Emelichev, Vladimir M Kotov, Kirill G Kuzmin, Tatyana T Lebedeva, Natalya V Semenova, Tatyana I Sergienko, None, Stability and Effective Algorithms for Solving Multiobjective Discrete Optimization Problems with Incomplete Information Journal of Automation and Information Sciences. ,vol. 46, pp. 27- 41 ,(2014) , 10.1615/JAUTOMATINFSCIEN.V46.I2.30
V. A. Emelichev, K. G. Kuzmin, Stability radius of a vector integer linear programming problem: case of a regular norm in the space of criteria Cybernetics and Systems Analysis. ,vol. 46, pp. 72- 79 ,(2010) , 10.1007/S10559-010-9185-2
V. A. Emelichev, K. G. Kuzmin, A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem Discrete Mathematics and Applications. ,vol. 17, pp. 349- 354 ,(2007) , 10.1515/DMA.2007.029
V. A. Emelichev, V. V. Korotkov, Stability radius of a vector investment problem with Savage's minimax risk criteria Cybernetics and Systems Analysis. ,vol. 48, pp. 378- 386 ,(2012) , 10.1007/S10559-012-9417-8