Geometric Measure Theory and the Axioms of Continuum Thermodynamics

作者: Morton E. Gurtin , William O. Williams , William P. Ziemer

DOI: 10.1007/BF00250730

关键词: Non-equilibrium thermodynamicsMathematicsEntropy rateAxiomPoint (geometry)Boolean algebra (structure)Geometric measure theoryThermodynamicsContinuum (measurement)Complex system

摘要: Basic to all of continuum physics is the notion a subbody given body B. Indeed, starting point for most theories assumption that underlying laws hold not only B itself but also subbodies

参考文章(16)
Herbert Federer, Geometric Measure Theory ,(1969)
James Sircom Allen, Geometric Integration Theory ,(2005)
Walter Noll, The Foundations of Classical Mechanics in the Light of Recent Advances in Continuum Mechanics Studies in logic and the foundations of mathematics. ,vol. 27, pp. 31- 47 ,(1974) , 10.1007/978-3-642-65817-4_2
Stanisław Saks, Theory of the Integral ,(2011)
Morton E. Gurtin, William O. Williams, An axiomatic foundation for continuum thermodynamics Archive for Rational Mechanics and Analysis. ,vol. 26, pp. 83- 117 ,(1967) , 10.1007/BF00285676
William O. Williams, Thermodynamics of rigid continua Archive for Rational Mechanics and Analysis. ,vol. 36, pp. 270- 284 ,(1970) , 10.1007/BF00249515
Morton E. Gurtin, Luiz C. Martins, Cauchy's theorem in classical physics Archive for Rational Mechanics and Analysis. ,vol. 60, pp. 305- 324 ,(1976) , 10.1007/BF00248882
William O. Williams, On internal interactions and the concept of thermal isolation Archive for Rational Mechanics and Analysis. ,vol. 34, pp. 245- 258 ,(1969) , 10.1007/BF00248568
Oliver Dimon Kellogg, Foundations of potential theory ,(1929)