作者: R. Durán Díaz , J. Muñoz Masqué , A. Peinado Domínguez
DOI: 10.1007/978-3-540-73074-3_25
关键词: Euler's formula 、 Trinomial 、 Conjecture 、 Function (mathematics) 、 Primality test 、 Discrete mathematics 、 Mathematics Subject Classification 、 Mathematics 、 Factorization of polynomials 、 Simple (abstract algebra)
摘要: In this paper, we present a function in $\mathbb{F}_2[X]$ and prove that several of its properties closely resemble those Euler's i¾?function. Additionally, conjecture another property for can be used as simple primality test $\mathbb{F}_2[X]$, provide numerical evidence to support conjecture. Finally, further apply the previous results design trinomials. Mathematics Subject Classification 2000:Primary 13P05; Secondary 11T06, 12E05, 15A04.