MC-LSTM: Mass-conserving LSTM

作者: Pieter-Jan Hoedt , Frederik Kratzert , Daniel Klotz , Christina Halmich , Markus Holzleitner

DOI:

关键词: Set (abstract data type)Conservation of massBenchmark (computing)Artificial intelligenceConstant (mathematics)Inductive biasPendulumConvolutional neural networkConservation lawComputer science

摘要: Abstract The success of Convolutional Neural Networks (CNNs) in computer vision is mainly driven by their strong inductive bias, which is strong enough to allow CNNs to solve vision …

参考文章(87)
Samy Bengio, Navdeep Jaitly, Noam Shazeer, Oriol Vinyals, Scheduled sampling for sequence prediction with recurrent Neural networks neural information processing systems. ,vol. 28, pp. 1171- 1179 ,(2015)
Yoshua Bengio, Yoshua Bengio, Yoshua Bengio, Yann LeCun, Convolutional networks for images, speech, and time series The handbook of brain theory and neural networks. pp. 255- 258 ,(1998)
Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, Wojciech Samek, On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLOS ONE. ,vol. 10, pp. 0130140- ,(2015) , 10.1371/JOURNAL.PONE.0130140
Christian Szegedy, Sergey Ioffe, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift international conference on machine learning. ,vol. 1, pp. 448- 456 ,(2015)
Michael Schmidt, Hod Lipson, Distilling Free-Form Natural Laws from Experimental Data Science. ,vol. 324, pp. 81- 85 ,(2009) , 10.1126/SCIENCE.1165893
Xin-Hua Song, Philip K. Hopke, Solving the Chemical Mass Balance Problem Using an Artificial Neural Network Environmental Science & Technology. ,vol. 30, pp. 531- 535 ,(1996) , 10.1021/ES950281O
E. Todini, Rainfall-runoff modeling — Past, present and future Journal of Hydrology. ,vol. 100, pp. 341- 352 ,(1988) , 10.1016/0022-1694(88)90191-6