The “Window t test”: a simple and powerful approach to detect differentially expressed genes in microarray datasets

作者: Fabrice Berger , Benoît Hertogh , Michaël Pierre , Anthoula Gaigneaux , Eric Depiereux

DOI: 10.2478/S11535-008-0030-9

关键词: Pattern recognitionExpression (mathematics)MicroarrayBiologySmall numberTest (assessment)Window (computing)Student's t-testArtificial intelligenceSimple (abstract algebra)BioinformaticsVariance (accounting)

摘要: This work focuses on differential expression analysis of microarray datasets. One way to improve such statistical analyses is integrate biological information in the design these analyses. In this paper, we will use relationship between level gene and variability. Using information, propose from multiple genes get a better estimate individual variance, when small number replicates are available, increase power analysis. We describe strategy named “Window t test” that uses which share similar compute variance then incorporated classic test. The performances new method evaluated by comparison with widely-used methods for (the Student test, Regularized test (reg test), SAM, Limma, LPE Shrinkage t). each case tested, results obtained were at least equivalent best performing and, most cases, outperformed it. Moreover, Window relies very simple procedure requiring computing compared other designed

参考文章(45)
Holger K. Eltzschig, Juan C. Ibla, Glenn T. Furuta, Martin O. Leonard, Kenneth A. Jacobson, Keiichi Enjyoji, Simon C. Robson, Sean P. Colgan, Coordinated Adenine Nucleotide Phosphohydrolysis and Nucleoside Signaling in Posthypoxic Endothelium Role of Ectonucleotidases and Adenosine A2B Receptors Journal of Experimental Medicine. ,vol. 198, pp. 783- 796 ,(2003) , 10.1084/JEM.20030891
Gabriela Cosío, Michael C Jeziorski, Fernando López-Barrera, Gonzalo Martínez de la Escalera, Carmen Clapp, Hypoxia Inhibits Expression of Prolactin and Secretion of Cathepsin-D by the GH4C1 Pituitary Adenoma Cell Line Laboratory Investigation. ,vol. 83, pp. 1627- 1636 ,(2003) , 10.1097/01.LAB.0000098429.59348.36
N. Jain, J. Thatte, T. Braciale, K. Ley, M. O'Connell, J. K. Lee, Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays Bioinformatics. ,vol. 19, pp. 1945- 1951 ,(2003) , 10.1093/BIOINFORMATICS/BTG264
Antonella Naldini, Fabio Carraro, Silvia Silvestri, Velio Bocci, Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells Journal of Cellular Physiology. ,vol. 173, pp. 335- 342 ,(1997) , 10.1002/(SICI)1097-4652(199712)173:3<335::AID-JCP5>3.0.CO;2-O
Terence P. Speed, Sandrine Dudoit, Y ee Hwa Yang, Matthew J. Callow, STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS Statistica Sinica. ,vol. 12, ,(2002)
Yee Leng Yap, Maria P Wong, Xue Wu Zhang, David Hernandez, Robin Gras, David K Smith, Antoine Danchin, None, Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays Nucleic Acids Research. ,vol. 33, pp. 409- 421 ,(2005) , 10.1093/NAR/GKI188
Luis del Peso, María C. Castellanos, Elisa Temes, Silvia Martín-Puig, Yolanda Cuevas, Gemma Olmos, Manuel O. Landázuri, The von Hippel Lindau/hypoxia inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen Journal of Biological Chemistry. ,vol. 278, pp. 48690- 48695 ,(2003) , 10.1074/JBC.M308862200
V. G. Tusher, R. Tibshirani, G. Chu, Significance analysis of microarrays applied to the ionizing radiation response Proceedings of the National Academy of Sciences of the United States of America. ,vol. 98, pp. 5116- 5121 ,(2001) , 10.1073/PNAS.091062498
E. Hubbell, W.-M. Liu, R. Mei, Robust estimators for expression analysis. Bioinformatics. ,vol. 18, pp. 1585- 1592 ,(2002) , 10.1093/BIOINFORMATICS/18.12.1585